A Closing Lemma for Non-uniformly Hyperbolic Singular Flows

被引:1
作者
Li, Ming [1 ,2 ]
Liang, Chao [3 ]
Liu, Xingzhong [4 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[3] Cent Univ Finance & Econ, Sch Stat & Math, Beijing 100081, Peoples R China
[4] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
SYMBOLIC DYNAMICS; INVARIANT-MANIFOLDS; PERIODIC POINTS; DIFFEOMORPHISMS; HORSESHOES; ENTROPY; SYSTEMS;
D O I
10.1007/s00220-024-05045-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we combine the profound Pesin theory with the sophisticated approach for addressing singular flows devised by Liao and prove a closing lemma for C1+alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C<<^>>{1+\alpha }$$\end{document} non-uniform hyperbolic singular flows. As an application, we prove that every ergodic hyperbolic measure which is not supported on singularities can be approximated by periodic measures.
引用
收藏
页数:35
相关论文
共 49 条