Squeezing enhanced ground-state cooling of semiconductor qubit coupled with mechanical resonator in microwave cavity

被引:0
作者
Samanta, Anjan [1 ,2 ]
Jana, Paresh Chandra [2 ]
机构
[1] Sabang Sajanikanta Mahavidyalaya, Dept Phys, Lutunia, Paschim Medinipur 721166, India
[2] Vidyasagar Univ Medinipur, Dept Phys, Paschim Medinipur 721102, India
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2024年 / 139卷 / 08期
基金
英国科研创新办公室;
关键词
2ND-HARMONIC GENERATION; QUANTUM; OSCILLATOR; MOTION; LIMIT;
D O I
10.1140/epjp/s13360-024-05542-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze ground-state cooling of a mechanical vibration mode in a system consisting of a semiconducting qubit in a microwave cavity coupled with a mechanical resonator. The development of quantum optomechanics prompts quantum computing and quantum information technology. To enhance ground-state cooling and improve the cooling efficiency we use squeezing light as driving. We have demonstrated that squeezing light enhances cooling efficiency significantly and more completely, whereas the conventional cooling method is insufficient. Our proposed system is successful (without entangling the microwave cavity) in cooling the mechanical motion in both the classical and quantum regimes. In the presence of the semiconducting qubit, we have achieved cooling of the mechanical resonators from the base temperature of 4.2K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4.2 \text{K}$$\end{document} down to 2.5mK +/- 0.3mK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.5 \text{mK} \pm 0.3 \text{mK}$$\end{document}. The optical force spectrum splits and gives rise to heating and cooling peaks due to the presence of semiconducting qubit. Destructive interference in the transition pathways mechanism is used for designing the microwave cavity system so that unwanted transitions (which contribute to heating) interfere destructively, canceling each other and enhancing the cooling efficiency by minimizing the energy transferred back to the mechanical resonator. By tuning gqb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${g}_{\text{qb}}$$\end{document} (coupling between semiconducting qubit and phonon) and g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g$$\end{document} (coupling between photon with phonon) and also power and amplitude of squeezed light, detuning one can control the rates of both cooling and heating transitions. This study may help to design quantum dot refrigerators, cooling devices, and transfer quantum states in quantum communication technology.
引用
收藏
页数:15
相关论文
共 107 条
  • [1] Electromagnetically induced transparency in mechanical effects of light
    Agarwal, G. S.
    Huang, Sumei
    [J]. PHYSICAL REVIEW A, 2010, 81 (04):
  • [2] Strong-coupling regime for quantum boxes in pillar microcavities:: Theory
    Andreani, LC
    Panzarini, G
    Gérard, JM
    [J]. PHYSICAL REVIEW B, 1999, 60 (19) : 13276 - 13279
  • [3] Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays
    Angelakis, Dimitris G.
    Santos, Marcelo Franca
    Bose, Sougato
    [J]. PHYSICAL REVIEW A, 2007, 76 (03):
  • [4] Magnon squeezing enhanced ground-state cooling in cavity magnomechanics
    Asjad, M.
    Li, Jie
    Zhu, Shi-Yao
    You, J. Q.
    [J]. FUNDAMENTAL RESEARCH, 2023, 3 (01): : 3 - 7
  • [5] Cavity optomechanics
    Aspelmeyer, Markus
    Kippenberg, Tobias J.
    Marquardt, Florian
    [J]. REVIEWS OF MODERN PHYSICS, 2014, 86 (04) : 1391 - 1452
  • [6] Quantum optomechanics
    Aspelmeyer, Markus
    Meystre, Pierre
    Schwab, Keith
    [J]. PHYSICS TODAY, 2012, 65 (07) : 29 - 35
  • [7] Reversible Optical-to-Microwave Quantum Interface
    Barzanjeh, Sh
    Abdi, M.
    Milburn, G. J.
    Tombesi, P.
    Vitali, D.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (13)
  • [8] Coherent control and feedback cooling in a remotely coupled hybrid atom-optomechanical system
    Bennett, James S.
    Madsen, Lars S.
    Baker, Mark
    Rubinsztein-Dunlop, Halina
    Bowen, Warwick P.
    [J]. NEW JOURNAL OF PHYSICS, 2014, 16
  • [9] Second-harmonic generation in GaAs:: Experiment versus theoretical predictions of χxyz(2) -: art. no. 036801
    Bergfeld, S
    Daum, W
    [J]. PHYSICAL REVIEW LETTERS, 2003, 90 (03) : 4
  • [10] Ultrahigh cooperativity interactions between magnons and resonant photons in a YIG sphere
    Bourhill, J.
    Kostylev, N.
    Goryachev, M.
    Creedon, D. L.
    Tobar, M. E.
    [J]. PHYSICAL REVIEW B, 2016, 93 (14)