Spectral Projections and Paley–Wiener Theorem for the Unit Ball in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^{n}$$\end{document}

被引:0
作者
Noureddine Imesmad [1 ]
机构
[1] University Ibn Tofail,Department of Mathematics, Faculty of Sciences
关键词
Strichartz conjecture; Poisson transform; Fourier transform;
D O I
10.1007/s11785-024-01555-9
中图分类号
学科分类号
摘要
For ν∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu \in \mathbb {R}$$\end{document}, we consider the invariant Laplacians Δν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{\nu }$$\end{document} in the unit complex ball    Bn=(SU(n,1)/S(U(n)×U(1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}^{n}=(SU(n,1)/S(U(n)\times U(1))$$\end{document}Δν=4(1-|z|2){∑i,j=1n(δij-zizj¯)∂2∂zi∂zj¯-ν2∑j=1nzj∂∂zj+ν2∑j=1nzj¯∂∂zj¯+ν24}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Delta _{\nu }= & {} 4(1-|z|^{2})\Bigg \{\sum _{i,j=1}^{n}(\delta _{ij}-z_{i}\bar{z_{j}})\dfrac{\partial ^{2}}{\partial z_{i}\partial \bar{z_{j}}}-\frac{\nu }{2}\sum _{j=1}^{n}z_{j}\dfrac{\partial }{\partial z_{j}}+\frac{\nu }{2}\sum _{j=1}^{n}\bar{z_{j}}\dfrac{\partial }{\partial \bar{z_{j}}}+\frac{\nu ^2}{4}\Bigg \} \end{aligned}$$\end{document}and the spectral projectors Qλ,ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {Q}}_{\lambda ,\nu }$$\end{document} associated to Δν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{\nu }$$\end{document} defined by Qλ,νf=|cν(λ)|-2f∗φλ,ν(z),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\mathcal {Q}}_{\lambda ,\nu }f= & {} |{\textbf{c}}_{\nu }(\lambda )|^{-2}f*\varphi _{\lambda ,\nu }(z), \end{aligned}$$\end{document}where φλ,ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi _{\lambda ,\nu }$$\end{document} is the S(U(n)×U(1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S(U(n)\times U(1))$$\end{document}-invariant eigenfunction of Δν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{\nu }$$\end{document} and cν(λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{c}}_{\nu }(\lambda )$$\end{document} the Harish-Chandra function. The goal of this paper is to give an image characterization of Qλ,ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {Q}}_{\lambda ,\nu }$$\end{document} of Cc∞(Bn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}_{c}^{\infty }({\mathcal {B}}^{n})$$\end{document} and L2(Bn,(1-|z|2)-n-1dm(z))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2}({\mathcal {B}}^{n},(1-|z|^2)^{-n-1}dm(z))$$\end{document}.
引用
收藏
相关论文
共 12 条
[1]  
Boussejra A(1998)-concrete spectral analysis of the invariant Laplacian in the unit complex ball J. Funct. Anal. 160 115-140
[2]  
Intissar A(2022)-Poisson integral representations of eigensections of invariant differential operators on a homogeneous line bundle over the complex Grassmann manifold Ann. Glob. Anal. Geom. 61 399-426
[3]  
Boussejra A (2023)A characterization of the J. Geom. Phys. 194 206-232
[4]  
Imesmad N(1996)-range of the Poisson transforms on a class of vector bundles over the quaternionic hyperbolic spaces J. Funct. Anal. 135 401-408
[5]  
Ouald Chaib A(1975)Generalized spectral projections on symmetric spaces of non compact type: Paley–Wiener theorems Proc. Am. Math. Soc. 47 145-159
[6]  
Boussejra A(1975)Spherical harmonic expansion of the Poisson–Szego kernel for the ball Arkiv For Matematik 13 330-384
[7]  
Ouald Chaib A(1994)A new proof of a Paley–Wiener type theorem for the Jacobi transform J. Funct. Anal. 121 51-148
[8]  
Bray WO (1991)The plancherel formula for spherical functions with a one-dimensional J. Funct. Anal. 87 undefined-undefined
[9]  
Folland GB(undefined)-type on a simply connected Lie group of Hermitian type undefined undefined undefined-undefined
[10]  
Koornwinder T(undefined)Harmonic analysis as spectral theory of Laplacians undefined undefined undefined-undefined