Manipulating electrochemical CO2 reduction pathway by engineering energy level of Cu/Zn dual-metal single atom catalysts

被引:14
作者
Dong, Gang [1 ]
Wang, Guo [2 ]
Hu, Yue [1 ]
Li, Meng [1 ]
Cheng, Jiarun [1 ]
Geng, Dongsheng [3 ]
机构
[1] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China
[2] North China Elect Power Univ, Sch Nucl Sci & Engn, Beijing 102206, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Sch Chem & Mat Sci, Nanjing 210044, Peoples R China
关键词
Cu; 1; x Zn x -NC catalysts; Dual -metal single atom; CO 2 reduction reaction; Density functional theory; C; 2; products; PHOTOCATALYTIC REDUCTION; HIGHLY EFFICIENT; CARBON-DIOXIDE; EVOLUTION; NANOPARTICLES; PERFORMANCE; SELECTIVITY; CONVERSION; OXIDATION;
D O I
10.1016/j.apsusc.2024.159956
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Dual-metal single atom catalysts (DSACs) demonstrate outstanding catalytic performance in the CO2 reduction reaction. However, the complexity of catalyst structures and interface environments has led to an unclear understanding of the synergistic catalysis mechanism involved. Here, we developed a series of catalysts with atomically dispersed Cu-N4 and Zn-N4 sites on N-doped carbon supports (Cu1-xZnx-NC), which can efficiently reduce CO2 to C2 products by optimizing the Zn loading. Specifically, a remarkable faradaic efficiency of 65 % at -1.1 VRHE for the C2 products on the Cu0.75Zn0.25-NC catalyst has been obtained. Structural characterizations and density functional theory calculations demonstrate that Cu/Zn DSACs synergistically lower the energy barrier of the rate-determining step and facilitate proton transfer kinetics. Among them, Zn atoms activate CO2, while Cu atoms aid in the adsorption and dissociation of intermediates. The electron energy redistribution induced by adjacent Cu-N4 and Zn-N4 site optimizes the 3d orbitals of Cu centers, thereby accelerating and promoting C-C coupling. The energy level optimization of Cu/Zn DSACs results in Cu0.75Zn0.25-NC with a high C2 selectivity and activity, improved kinetics. In summary, these findings provide new insights into the development of highly efficient DSACs and its synergistic catalysis mechanism in CO2 reduction.
引用
收藏
页数:9
相关论文
共 54 条
[1]   Effects of CO2 enrichment on photosynthesis, growth, and nitrogen metabolism of the seagrass Zostera noltii [J].
Alexandre, Ana ;
Silva, Joao ;
Buapet, Pimchanok ;
Bjork, Mats ;
Santos, Rui .
ECOLOGY AND EVOLUTION, 2012, 2 (10) :2620-2630
[2]   Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO2 Fixation [J].
Appel, Aaron M. ;
Bercaw, John E. ;
Bocarsly, Andrew B. ;
Dobbek, Holger ;
DuBois, Daniel L. ;
Dupuis, Michel ;
Ferry, James G. ;
Fujita, Etsuko ;
Hille, Russ ;
Kenis, Paul J. A. ;
Kerfeld, Cheal A. ;
Morris, Robert H. ;
Peden, Charles H. F. ;
Portis, Archie R. ;
Ragsdale, Stephen W. ;
Rauchfuss, Thomas B. ;
Reek, Joost N. H. ;
Seefeldt, Lance C. ;
Thauer, Rudolf K. ;
Waldrop, Grover L. .
CHEMICAL REVIEWS, 2013, 113 (08) :6621-6658
[3]   Catalysis for the Valorization of Exhaust Carbon: from CO2 to Chemicals, Materials, and Fuels. Technological Use of CO2 [J].
Aresta, Michele ;
Dibenedetto, Angela ;
Angelini, Antonella .
CHEMICAL REVIEWS, 2014, 114 (03) :1709-1742
[4]   Isolated copper single sites for high-performance electroreduction of carbon monoxide to multicarbon products [J].
Bao, Haihong ;
Qiu, Yuan ;
Peng, Xianyun ;
Wang, Jia-ao ;
Mi, Yuying ;
Zhao, Shunzheng ;
Liu, Xijun ;
Liu, Yifan ;
Cao, Rui ;
Zhuo, Longchao ;
Ren, Junqiang ;
Sun, Jiaqiang ;
Luo, Jun ;
Sun, Xuping .
NATURE COMMUNICATIONS, 2021, 12 (01)
[5]   Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels [J].
Birdja, Yuvraj Y. ;
Perez-Gallent, Elena ;
Figueiredo, Marta C. ;
Gottle, Adrien J. ;
Calle-Vallejo, Federico ;
Koper, Marc T. M. .
NATURE ENERGY, 2019, 4 (09) :732-745
[6]   Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes [J].
Chen, Xinyi ;
Chen, Junfeng ;
Alghoraibi, Nawal M. ;
Henckel, Danielle A. ;
Zhang, Ruixian ;
Nwabara, Uzoma O. ;
Madsen, Kenneth E. ;
Kenis, Paul J. A. ;
Zimmerman, Steven C. ;
Gewirth, Andrew A. .
NATURE CATALYSIS, 2021, 4 (01) :20-27
[7]   Atomically Dispersed Ni/Cu Dual Sites for Boosting the CO2 Reduction Reaction [J].
Cheng, Huiyuan ;
Wu, Xuemei ;
Feng, Manman ;
Li, Xiangcun ;
Lei, Guangping ;
Fan, Zihao ;
Pan, Dongwei ;
Cui, Fujun ;
He, Gaohong .
ACS CATALYSIS, 2021, 11 (20) :12673-12681
[8]   Boosting the CO2 electroreduction performance of La2-xAgxCuO4-δ perovskites via A-site substitution mechanism [J].
Dong, Gang ;
Wang, Guo ;
Cheng, Jiarun ;
Li, Meng ;
Liang, Zhifu ;
Geng, Dongsheng ;
Tang, Weiqiang .
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2024, 342
[9]   Electronic factors determining the reactivity of metal surfaces [J].
Hammer, B ;
Norskov, JK .
SURFACE SCIENCE, 1995, 343 (03) :211-220
[10]   Promises of Main Group Metal-Based Nanostructured Materials for Electrochemical CO2 Reduction to Formate [J].
Han, Na ;
Ding, Pan ;
He, Le ;
Li, Youyong ;
Li, Yanguang .
ADVANCED ENERGY MATERIALS, 2020, 10 (11)