Charged wormhole solutions utilizing Karmarkar condition in Ricci inverse gravity

被引:21
作者
Malik, Adnan [1 ,2 ]
Hussain, Amjad [3 ]
Ahmad, Mushtaq [3 ]
Shamir, M. Farasat [4 ]
机构
[1] Zhejiang Normal Univ, Sch Math Sci, Jinhua, Zhejiang, Peoples R China
[2] Univ Management & Technol, Dept Math, Sialkot Campus, Lahore, Pakistan
[3] Natl Univ Comp & Emerging Sci, Faisalabad Campus, Chiniot, Pakistan
[4] Natl Univ Comp & Emerging Sci, Lahore Campus, Lahore, Pakistan
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2024年 / 139卷 / 06期
关键词
F(R;
D O I
10.1140/epjp/s13360-024-05277-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This study aims to present the charged wormhole solutions within the framework of modified f(R,A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f({\mathcal {R}}, {\mathcal {A}})$$\end{document} gravity, where R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}$$\end{document} is the Ricci scalar and A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} is the anti-curvature scalar. The proposed gravity is characterized by applying a linear model f(R,A)=R+alpha A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f({\mathcal {R}}, {\mathcal {A}})={\mathcal {R}}+\alpha {\mathcal {A}}$$\end{document}, where alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is the coupling parameter, and taking into account the charged anisotropic matter composition. The Karmarkar condition serves as a pivotal tool in our investigation, allowing us to precisely establish the wormhole shape function, which dictates the structure of charged wormholes. This wormhole shape function fulfills all the necessary criteria for wormhole solutions. The physical features such as energy density, pressure components, and energy conditions are calculated and represented graphically using a specific type of charge distribution. The analysis of computed wormhole shape function through graphical representation, utilizing suitable parameter values, illustrates the breach of energy conditions, signifying the existence of a wormhole. The presented charged wormhole solutions in this work not only illustrate the violation of energy conditions but also open up discussions on the unusual characteristics of spacetime. Moreover, utilizing the equilibrium condition, the wormhole stability is evaluated in the presence of a charged electric force. Overall, we can deduce that our findings fulfill all the criteria for the existence of a wormhole, affirming the validity and consistency of our study.
引用
收藏
页数:17
相关论文
共 44 条
[1]   Ricci-inverse gravity: A novel alternative gravity, its flaws, and how to cure them [J].
Amendola, Luca ;
Giani, Leonardo ;
Laverda, Giorgio .
PHYSICS LETTERS B, 2020, 811
[2]  
[Anonymous], 2023, Int. J. Geometr. Methods Mod. Phys., V20
[3]   Comprehensive analysis of relativistic embedded class-I exponential compact spheres in f (R, φ) gravity via Karmarkar condition [J].
Asghar, Zoya ;
Malik, Adnan ;
Shamir, M. Farasat ;
Mofarreh, Fatemah .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2023, 75 (10)
[4]   Study of embedded class-I fluid spheres in f (R, T) gravity with Karmarkar condition [J].
Asghar, Zoya ;
Shamir, M. Farasat ;
Usman, Ammara ;
Malik, Adnan .
CHINESE JOURNAL OF PHYSICS, 2023, 83 :427-437
[5]   Can we bypass no-go theorem for Ricci-inverse gravity? [J].
Das, Indranil ;
Johnson, Joseph P. ;
Shankaranarayanan, S. .
EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (11)
[6]   A study of an embedding class-I traversable wormhole in Galileon Gravity [J].
Das, Krishna Pada ;
Debnath, Ujjal .
CHINESE JOURNAL OF PHYSICS, 2024, 89 :111-133
[7]   An axially symmetric spacetime with causality violation in Ricci-inverse gravity [J].
de Souza, J. C. R. ;
Santos, A. F. .
EUROPEAN PHYSICAL JOURNAL C, 2023, 83 (09)
[8]   Study on charged strange stars in f(R, T) gravity [J].
Deb, Debabrata ;
Ketov, Sergei V. ;
Khlopov, Maxim ;
Ray, Saibal .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2019, (10)
[9]  
DEFELICE F, 1995, MON NOT R ASTRON SOC, V277, pL17
[10]   No-go theorem for inflation in an extended Ricci-inverse gravity model [J].
Do, Tuan Q. .
EUROPEAN PHYSICAL JOURNAL C, 2022, 82 (01)