Charged wormhole solutions utilizing Karmarkar condition in Ricci inverse gravity
被引:11
|
作者:
Malik, Adnan
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Normal Univ, Sch Math Sci, Jinhua, Zhejiang, Peoples R China
Univ Management & Technol, Dept Math, Sialkot Campus, Lahore, PakistanZhejiang Normal Univ, Sch Math Sci, Jinhua, Zhejiang, Peoples R China
Malik, Adnan
[1
,2
]
Hussain, Amjad
论文数: 0引用数: 0
h-index: 0
机构:
Natl Univ Comp & Emerging Sci, Faisalabad Campus, Chiniot, PakistanZhejiang Normal Univ, Sch Math Sci, Jinhua, Zhejiang, Peoples R China
Hussain, Amjad
[3
]
Ahmad, Mushtaq
论文数: 0引用数: 0
h-index: 0
机构:
Natl Univ Comp & Emerging Sci, Faisalabad Campus, Chiniot, PakistanZhejiang Normal Univ, Sch Math Sci, Jinhua, Zhejiang, Peoples R China
Ahmad, Mushtaq
[3
]
Shamir, M. Farasat
论文数: 0引用数: 0
h-index: 0
机构:
Natl Univ Comp & Emerging Sci, Lahore Campus, Lahore, PakistanZhejiang Normal Univ, Sch Math Sci, Jinhua, Zhejiang, Peoples R China
Shamir, M. Farasat
[4
]
机构:
[1] Zhejiang Normal Univ, Sch Math Sci, Jinhua, Zhejiang, Peoples R China
This study aims to present the charged wormhole solutions within the framework of modified f(R,A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f({\mathcal {R}}, {\mathcal {A}})$$\end{document} gravity, where R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}$$\end{document} is the Ricci scalar and A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} is the anti-curvature scalar. The proposed gravity is characterized by applying a linear model f(R,A)=R+alpha A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f({\mathcal {R}}, {\mathcal {A}})={\mathcal {R}}+\alpha {\mathcal {A}}$$\end{document}, where alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is the coupling parameter, and taking into account the charged anisotropic matter composition. The Karmarkar condition serves as a pivotal tool in our investigation, allowing us to precisely establish the wormhole shape function, which dictates the structure of charged wormholes. This wormhole shape function fulfills all the necessary criteria for wormhole solutions. The physical features such as energy density, pressure components, and energy conditions are calculated and represented graphically using a specific type of charge distribution. The analysis of computed wormhole shape function through graphical representation, utilizing suitable parameter values, illustrates the breach of energy conditions, signifying the existence of a wormhole. The presented charged wormhole solutions in this work not only illustrate the violation of energy conditions but also open up discussions on the unusual characteristics of spacetime. Moreover, utilizing the equilibrium condition, the wormhole stability is evaluated in the presence of a charged electric force. Overall, we can deduce that our findings fulfill all the criteria for the existence of a wormhole, affirming the validity and consistency of our study.
机构:
Mathematical Science Department Faculty of Science Princess Nourah bint Abdulrahman UniversityDepartment of Mathematics, University of Management and Technology,Sialkot Campus
Fatemah Mofarreh
Aqsa Zia
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mathematics, University of Management and Technology,Sialkot CampusDepartment of Mathematics, University of Management and Technology,Sialkot Campus