Advancing forest carbon stocks' mapping using a hierarchical approach with machine learning and satellite imagery

被引:5
作者
Illarionova, Svetlana [1 ]
Tregubova, Polina [1 ]
Shukhratov, Islomjon [1 ]
Shadrin, Dmitrii [1 ,2 ]
Efimov, Albert [3 ]
Burnaev, Evgeny [1 ,4 ]
机构
[1] Skolkovo Inst Sci & Technol, Bolshoy Blvd 30,Bld 1, Moscow 121205, Russia
[2] Irkutsk Natl Res Tech Univ, Inst Informat Technol & Data Sci, Irkutsk 664074, Russia
[3] Sberbank Russia, Sber Innovat & Res, Moscow 117312, Russia
[4] Autonomous Nonprofit Org, Artificial Intelligence Res Inst AIRI, Moscow 105064, Russia
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Forest management; Computer vision; Machine learning; Environmental science; Forestry; Remote sensing; ABOVEGROUND BIOMASS; GROWTH; SINK;
D O I
10.1038/s41598-024-71133-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Remote sensing of forests is a powerful tool for monitoring the biodiversity of ecosystems, maintaining general planning, and accounting for resources. Various sensors bring together heterogeneous data, and advanced machine learning methods enable their automatic handling in wide territories. Key forest properties usually under consideration in environmental studies include dominant species, tree age, height, basal area and timber stock. Being proxies of stand productivity, they can be utilized for forest carbon stock estimation to analyze forests' status and proper climate change mitigation measures on a global scale. In this study, we aim to develop an effective machine learning-based pipeline for automatic carbon stock estimation using solely freely available and regularly updated satellite observations. We employed multispectral Sentinel-2 remote sensing data to predict forest structure characteristics and produce their detailed spatial maps. Using the Extreme Gradient Boosting (XGBoost) algorithm in classification and regression settings and management-level inventory data as reference measurements, we achieved quality of predictions of species equal to 0.75 according to the F1-score, and for stand age, height, and basal area, we achieved an accuracy of 0.75, 0.58 and 0.56, respectively, according to the R2. We focused on the growing stock volume as the main proxy to estimate forest carbon stocks on the example of the stem pool. We explored two approaches: a direct approach and a hierarchical approach. The direct approach leverages the remote sensing data to create the target maps, and the hierarchical approach calculates the target forest properties using predicted inventory characteristics and conversion equations. We estimated stem carbon stock based on the same approach: from Earth observation imagery directly and using biomass and conversion factors developed for the northern regions. Thus, our study proposes an end-to-end solution for carbon stock estimations based on the complexation of inventory data at the forest stand level, Earth observation imagery, machine learning predictions and conversion equations for the region. The presented approach enables more robust and accurate large-scale assessments using limited annotated datasets.
引用
收藏
页数:20
相关论文
共 62 条
  • [1] Improving Landsat predictions of rangeland fractional cover with multitask learning and uncertainty
    Allred, Brady W.
    Bestelmeyer, Brandon T.
    Boyd, Chad S.
    Brown, Christopher
    Davies, Kirk W.
    Duniway, Michael C.
    Ellsworth, Lisa M.
    Erickson, Tyler A.
    Fuhlendorf, Samuel D.
    Griffiths, Timothy V.
    Jansen, Vincent
    Jones, Matthew O.
    Karl, Jason
    Knight, Anna
    Maestas, Jeremy D.
    Maynard, Jonathan J.
    McCord, Sarah E.
    Naugle, David E.
    Starns, Heath D.
    Twidwell, Dirac
    Uden, Daniel R.
    [J]. METHODS IN ECOLOGY AND EVOLUTION, 2021, 12 (05): : 841 - 849
  • [2] The role of soil carbon in natural climate solutions
    Bossio, D. A.
    Cook-Patton, S. C.
    Ellis, P. W.
    Fargione, J.
    Sanderman, J.
    Smith, P.
    Wood, S.
    Zomer, R. J.
    von Unger, M.
    Emmer, I. M.
    Griscom, B. W.
    [J]. NATURE SUSTAINABILITY, 2020, 3 (05) : 391 - 398
  • [3] Above-ground carbon stocks and timber value of old timber plantations, secondary and primary forests in southern Ghana
    Brown, Hugh C. A.
    Berninger, Frank A.
    Larjavaara, Markku
    Appiah, Mark
    [J]. FOREST ECOLOGY AND MANAGEMENT, 2020, 472 (472)
  • [4] Evaluating the convergence between eddy-covariance and biometric methods for assessing carbon budgets of forests
    Campioli, M.
    Malhi, Y.
    Vicca, S.
    Luyssaert, S.
    Papale, D.
    Penuelas, J.
    Reichstein, M.
    Migliavacca, M.
    Arain, M. A.
    Janssens, I. A.
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [5] XGBoost: A Scalable Tree Boosting System
    Chen, Tianqi
    Guestrin, Carlos
    [J]. KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 785 - 794
  • [6] Copernicus Open Access Hub, US
  • [7] ForestGEO: Understanding forest diversity and dynamics through a global observatory network
    Davies, Stuart J.
    Abiem, Iveren
    Abu Salim, Kamariah
    Aguilar, Salomon
    Allen, David
    Alonso, Alfonso
    Anderson-Teixeira, Kristina
    Andrade, Ana
    Arellano, Gabriel
    Ashton, Peter S.
    Baker, Patrick J.
    Baker, Matthew E.
    Baltzer, Jennifer L.
    Basset, Yves
    Bissiengou, Pulcherie
    Bohlman, Stephanie
    Bourg, Norman A.
    Brockelman, Warren Y.
    Bunyavejchewin, Sarayudh
    Burslem, David F. R. P.
    Cao, Min
    Cardenas, Dairon
    Chang, Li-Wan
    Chang-Yang, Chia-Hao
    Chao, Kuo-Jung
    Chao, Wei-Chun
    Chapman, Hazel
    Chen, Yu-Yun
    Chisholm, Ryan A.
    Chu, Chengjin
    Chuyong, George
    Clay, Keith
    Comita, Liza S.
    Condit, Richard
    Cordell, Susan
    Dattaraja, Handanakere S.
    de Oliveira, Alexandre Adalardo
    den Ouden, Jan
    Detto, Matteo
    Dick, Christopher
    Du, Xiaojun
    Duque, Alvaro
    Ediriweera, Sisira
    Ellis, Erle C.
    Obiang, Nestor Laurier Engone
    Esufali, Shameema
    Ewango, Corneille E. N.
    Fernando, Edwino S.
    Filip, Jonah
    Fischer, Gunter A.
    [J]. BIOLOGICAL CONSERVATION, 2021, 253
  • [8] The Importance of Consistent Global Forest Aboveground Biomass Product Validation
    Duncanson, L.
    Armston, J.
    Disney, M.
    Avitabile, V.
    Barbier, N.
    Calders, K.
    Carter, S.
    Chave, J.
    Herold, M.
    Crowther, T. W.
    Falkowski, M.
    Kellner, J. R.
    Labriere, N.
    Lucas, R.
    MacBean, N.
    McRoberts, R. E.
    Meyer, V.
    Naesset, E.
    Nickeson, J. E.
    Paul, K. I.
    Phillips, O. L.
    Rejou-Mechain, M.
    Roman, M.
    Roxburgh, S.
    Saatchi, S.
    Schepaschenko, D.
    Scipal, K.
    Siqueira, P. R.
    Whitehurst, A.
    Williams, M.
    [J]. SURVEYS IN GEOPHYSICS, 2019, 40 (04) : 979 - 999
  • [9] The global carbon cycle:: A test of our knowledge of earth as a system
    Falkowski, P
    Scholes, RJ
    Boyle, E
    Canadell, J
    Canfield, D
    Elser, J
    Gruber, N
    Hibbard, K
    Högberg, P
    Linder, S
    Mackenzie, FT
    Moore, B
    Pedersen, T
    Rosenthal, Y
    Seitzinger, S
    Smetacek, V
    Steffen, W
    [J]. SCIENCE, 2000, 290 (5490) : 291 - 296
  • [10] Texture Features Derived from Sentinel-2 Vegetation Indices for Estimating and Mapping Forest Growing Stock Volume
    Fang, Gengsheng
    He, Xiaobing
    Weng, Yuhui
    Fang, Luming
    [J]. REMOTE SENSING, 2023, 15 (11)