Three kinds of connectivity of folded spined cubes

被引:0
作者
Lin, Siqi [1 ]
Cheng, Dongqin [1 ]
机构
[1] Jinan Univ, Coll Informat Sci & Technol, Dept Math, Guangzhou 510632, Peoples R China
关键词
Folded spined cube; Connectivity; Super-connectivity; Generalized; 3-connectivity; SUPER-EDGE-CONNECTIVITY; GENERALIZED CONNECTIVITY; 4-CONNECTIVITY; GRAPHS;
D O I
10.1007/s11227-024-06197-4
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
An n-dimensional folded spined cube denoted as FSQn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$FSQ_n$$\end{document} is one of the new interconnection networks. It is a new variant of hypercube, and it can be generated from spined cube by adding a perfect matching. Folded spined cube has lower cost and less diameter compared to some interconnection networks like hypercube and spined cube. Additionally, it is necessary to study some properties regarding to connectivity for a novel and valuable network. In this paper, we determine that the connectivity and edge-connectivity of FSQn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$FSQ_n$$\end{document} are both n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n+1$$\end{document} for n >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document}, its super-connectivity and super-edge connectivity are both 2n for n >= 4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 4$$\end{document}, and its generalized 3-connectivity is n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n+1$$\end{document} for n >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document}.
引用
收藏
页码:19485 / 19506
页数:22
相关论文
共 33 条
[1]   THE TWISTED CUBE TOPOLOGY FOR MULTIPROCESSORS - A STUDY IN NETWORK ASYMMETRY [J].
ABRAHAM, S ;
PADMANABHAN, K .
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 1991, 13 (01) :104-110
[2]  
Bondy JA, 2008, GRAPH THEORY
[3]   Rainbow Trees in Graphs and Generalized Connectivity [J].
Chartrand, Gary ;
Okamoto, Futaba ;
Zhang, Ping .
NETWORKS, 2010, 55 (04) :360-367
[4]   A solution to a conjecture on the generalized connectivity of graphs [J].
Chen, Lily ;
Li, Xueliang ;
Liu, Mengmeng ;
Mao, Yaping .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 33 (01) :275-282
[5]   Super-connectivity and super-edge-connectivity for some interconnection networks [J].
Chen, YC ;
Tan, JJM ;
Hsu, LH ;
Kao, SS .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 140 (2-3) :245-254
[6]   THE MOBIUS CUBES [J].
CULL, P ;
LARSON, SM .
IEEE TRANSACTIONS ON COMPUTERS, 1995, 44 (05) :647-659
[7]   THE CROSSED CUBE ARCHITECTURE FOR PARALLEL COMPUTATION [J].
EFE, K .
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 1992, 3 (05) :513-524
[8]   ON COMPUTING A CONDITIONAL EDGE-CONNECTIVITY OF A GRAPH [J].
ESFAHANIAN, AH ;
HAKIMI, SL .
INFORMATION PROCESSING LETTERS, 1988, 27 (04) :195-199
[9]   PENDANT TREE-CONNECTIVITY [J].
HAGER, M .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1985, 38 (02) :179-189
[10]   The Generalized Connectivity of Data Center Networks [J].
Hao, Chen ;
Yang, Weihua .
PARALLEL PROCESSING LETTERS, 2019, 29 (02)