Finding eigenvectors with a quantum variational algorithm

被引:0
作者
Garcia-Escartin, Juan Carlos [1 ]
机构
[1] Univ Valladolid, Dept Teoria Senal & Ing Telemat, Paseo Belen 15, Valladolid 47011, Spain
关键词
Quantum algorithms; Variational algorithms; Hybrid quantum algorithms; Eigenvectors; Quantum principal component analysis; SWAP test; SYSTEMS; TRANSFORMATION; EIGENSOLVER; SIMULATION;
D O I
10.1007/s11128-024-04461-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper presents a hybrid variational quantum algorithm that finds a random eigenvector of a unitary matrix with a known quantum circuit. The algorithm is based on the SWAP test on trial states generated by a parametrized quantum circuit. The eigenvector is described by a compact set of classical parameters that can be used to reproduce the found approximation to the eigenstate on demand. This variational eigenvector finder can be adapted to solve the generalized eigenvalue problem, to find the eigenvectors of normal matrices and to perform quantum principal component analysis on unknown input mixed states. These algorithms can all be run with low-depth quantum circuits, suitable for an efficient implementation on noisy intermediate-scale quantum computers and, with some restrictions, on linear optical systems. In full-scale quantum computers, where there might be optimization problems due to barren plateaus in larger systems, the proposed algorithms can be used as a primitive to boost known quantum algorithms. Limitations and potential applications are discussed.
引用
收藏
页数:24
相关论文
共 94 条
[1]  
Aaronson S, 2011, ACM S THEORY COMPUT, P333
[2]   Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors [J].
Abrams, DS ;
Lloyd, S .
PHYSICAL REVIEW LETTERS, 1999, 83 (24) :5162-5165
[3]  
Aharonov D., 2006, STOC'06. Proceedings of the 38th Annual ACM Symposium on Theory of Computing, P427, DOI 10.1145/1132516.1132579
[4]   ORBITAL ANGULAR-MOMENTUM OF LIGHT AND THE TRANSFORMATION OF LAGUERRE-GAUSSIAN LASER MODES [J].
ALLEN, L ;
BEIJERSBERGEN, MW ;
SPREEUW, RJC ;
WOERDMAN, JP .
PHYSICAL REVIEW A, 1992, 45 (11) :8185-8189
[5]  
Allen S., 2003, Optical Angular Momen-tum, P31
[6]  
Alonso-Linaje G., 2021, ARXIV
[7]  
Anderson E., 1999, LAPACK Users' Guide, V3, DOI DOI 10.1137/1.9780898719604
[8]   Quantum circuits cannot control unknown operations [J].
Araujo, Mateus ;
Feix, Adrien ;
Costa, Fabio ;
Brukner, Caslav .
NEW JOURNAL OF PHYSICS, 2014, 16
[9]   Quantum circuits with many photons on a programmable nanophotonic chip [J].
Arrazola, J. M. ;
Bergholm, V ;
Bradler, K. ;
Bromley, T. R. ;
Collins, M. J. ;
Dhand, I ;
Fumagalli, A. ;
Gerrits, T. ;
Goussev, A. ;
Helt, L. G. ;
Hundal, J. ;
Isacsson, T. ;
Israel, R. B. ;
Izaac, J. ;
Jahangiri, S. ;
Janik, R. ;
Killoran, N. ;
Kumar, S. P. ;
Lavoie, J. ;
Lita, A. E. ;
Mahler, D. H. ;
Menotti, M. ;
Morrison, B. ;
Nam, S. W. ;
Neuhaus, L. ;
Qi, H. Y. ;
Quesada, N. ;
Repingon, A. ;
Sabapathy, K. K. ;
Schuld, M. ;
Su, D. ;
Swinarton, J. ;
Szava, A. ;
Tan, K. ;
Tan, P. ;
Vaidya, V. D. ;
Vernon, Z. ;
Zabaneh, Z. ;
Zhang, Y. .
NATURE, 2021, 591 (7848) :54-+
[10]   Stabilization of quantum computations by symmetrization [J].
Barenco, A ;
Berthiaume, A ;
Deutsch, D ;
Ekert, A ;
Jozsa, R ;
Macchiavello, C .
SIAM JOURNAL ON COMPUTING, 1997, 26 (05) :1541-1557