La 0.6 Sr 0.4 Fe 0.8 Co 0.2 O 3-δ electrophoretic coating for oxygen transport membranes

被引:5
作者
Guironnet L. [1 ,3 ]
Geffroy P.-M. [1 ]
Jouay F. [1 ]
Pagnoux C. [1 ]
Richet N. [2 ]
Chartier T. [1 ]
机构
[1] IRCER, CNRS, Université de Limoges, CEC, 12 Rue Atlantis, Limoges
[2] Air Liquide CRCD, 1 chemin de la Porte des Loges, BP126, Jouy en Josas
[3] ADEME, 20 rue du Grésillé – BP90406, Angers Cedex 01
来源
Chemical Engineering Science: X | 2019年 / 1卷
关键词
Electrophoretic coating; Mixed conductor; Oxygen semi-permeation; Porous layer;
D O I
10.1016/j.cesx.2019.100008
中图分类号
学科分类号
摘要
This work describes the development of electrophoretic deposition method for the elaboration of a porous coating on a dense membrane in order to improve its oxygen permeation performance. The dense membrane material produced from La 0.5 Sr 0.5 Fe 0.7 Ga 0.3 O 3-δ perovskite is coated with La 0.6 Sr 0.4 Fe 0.8 Co 0.2 O 3-δ perovskite layer by electrophoretic deposition method in order to improve the kinetics of oxygen surface exchanges. Then, the oxygen flux through the La 0.5 Sr 0.5 Fe 0.7 Ga 0.3 O 3-δ dense membrane is largely impacted by La 0.6 Sr 0.4 Fe 0.8 Co 0.2 O 3-δ electrophoretic coating, from 0.5 to 2.6 10 −3 mol⋅m −2 ⋅s −1 without and with La 0.6 Sr 0.4 Fe 0.8 Co 0.2 O 3-δ coating after heating at 900 °C, respectively. Besides, a large impact of the thickness of the electrophoretic coating on the oxygen flux through the membranes is observed. The electrophoretic deposition has shown to be a powerful elaboration method of membrane to produce gaseous oxygen with high purity. © 2019 The Author(s)
引用
收藏
相关论文
共 50 条
  • [21] Correlation between defect structure and electrochemical properties of mixed conducting La0.1Sr0.9Co0.8Fe0.2O3-δ
    Choi, Moon-Bong
    Jeon, Sang-Yun
    Singh, Bhupendra
    Yoo, Young-Sung
    Hwang, Jin-Ha
    Song, Sun-Ju
    ACTA MATERIALIA, 2014, 65 : 373 - 382
  • [22] Stability, oxygen permeability and chemical expansion of Sr(Fe,Al)O3-δ- and Sr(Co,Fe)O3-δ-based membranes
    Yaremchenko, A. A.
    Tsipis, E. V.
    Kovalevsky, A. V.
    Waerenborgh, J. C.
    Kharton, V. V.
    SOLID STATE IONICS, 2011, 192 (01) : 259 - 268
  • [23] Electrical property, crystal structure and oxygen nonstoichiometry of La1-xSrxCo0.2Fe0.8O3-δ
    Mineshige, A
    Izutsu, J
    Nakamura, M
    Nigaki, K
    Kobune, M
    Fujii, S
    Inaba, M
    Ogumi, Z
    Yao, T
    ELECTROCHEMISTRY, 2000, 68 (06) : 515 - 518
  • [24] Oxygen permeation through a Ce0.8Sm0.2O2-δ-La0.8Sr0.2CrO3-δ dual-phase composite membrane
    Yi, Jianxin
    Zuo, Yanbo
    Liu, Wei
    Winnubst, Louis
    Chen, Chusheng
    JOURNAL OF MEMBRANE SCIENCE, 2006, 280 (1-2) : 849 - 855
  • [25] Investigation of phase structure, sintering, and permeability of perovskite-type Ba0.5Sr0.5Co0.8Fe0.2O3-δ membranes
    Wang, HH
    Tablet, C
    Feldhoff, A
    Caro, H
    JOURNAL OF MEMBRANE SCIENCE, 2005, 262 (1-2) : 20 - 26
  • [26] High temperature degradation of Ba0.5Sr0.5Co0.8Fe0.2O3-δ membranes in atmospheres containing concentrated carbon dioxide
    Yi, Jianxin
    Schroeder, Michael
    JOURNAL OF MEMBRANE SCIENCE, 2011, 378 (1-2) : 163 - 170
  • [27] CHLORINE-DOPED Ba0.5Sr0.5Co0.8Fe0.2O3-δ AS AN OXYGEN-PERMEABLE MEMBRANE AT INTERMEDIATE TEMPERATURE
    Liu, Hongfei
    Wei, Yanying
    Huang, Liu
    Wang, Haihui
    FUNCTIONAL MATERIALS LETTERS, 2011, 4 (03) : 261 - 264
  • [28] An oxygen permeable membrane La0.8Sr0.2(Ga0.8Mg0.2)1-xCrxO3-δ for a reduced atmosphere
    Ishida, J.
    Murata, K.
    Ichikawa, T.
    Hirano, A.
    Imanishi, N.
    Takeda, Y.
    Yamamoto, O.
    SOLID STATE IONICS, 2009, 180 (17-19) : 1045 - 1049
  • [29] High-Flux Oxygen-Transporting Membrane Pr0.6Sr0.4Co0.5Fe0.5O3-δ: CO2 Stability and Microstructure
    Partovi, Kaveh
    Liang, Fangyi
    Ravkina, Olga
    Caro, Juergen
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (13) : 10274 - 10282
  • [30] Oxygen nonstoichiometry, mixed valency and mixed conduction in (La,Sr)(Co,Fe)O3-δ
    Mineshige, Atsushi
    Abe, Jiro
    Kobune, Masafumi
    Uchimoto, Yoshiharu
    Yazawa, Tetsuo
    SOLID STATE IONICS, 2006, 177 (19-25) : 1803 - 1806