On (semi)topology L-algebras

被引:0
作者
Kologani, Mona Aaly [1 ,2 ]
机构
[1] Shahid Beheshti Univ, Dept Math, Fac Math Sci, Tehran, Iran
[2] Hatef Higher Educ Inst, Zahedan, Iran
关键词
L-algebra; ideal; (semi)topological L-algebra; quotient L-algebra; Hausdorff; SET-THEORETICAL SOLUTIONS; SKEW POLYNOMIAL-RINGS; QUANTUM;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Here, we define (semi)topological L-algebras and some related results are approved. Then we deduce conditions that mention an L-algebra to be a semi-topological or a topological L-algebra and we check some attributes of them. Chiefly, we display in an L-algebra L, if (L, (sic), tau) is a semi-topological L-algebra and {1} is an open set or L is bounded and satisfies the double negation property, then (L, tau) is a topological L-algebra. Finally, we construct a discrete topology on a quotient L-algebra, under suitable conditions. Also, different kinds of topology such as T-0 and Hausdorff are investigated.
引用
收藏
页码:81 / 103
页数:23
相关论文
共 24 条
[1]  
Aaly Kologani M., 2017, Quasigroup Related Systems, V25, P165
[2]   Metrizability on (semi)topological BL-algebras [J].
Borzooei, R. A. ;
Rezaei, G. R. ;
Kouhestani, N. .
SOFT COMPUTING, 2012, 16 (10) :1681-1690
[3]   On (Semi) Topological BL-algebras [J].
Borzooei, R. A. ;
Rezaei, G. R. ;
Kouhestani, N. .
IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2011, 6 (01) :59-77
[4]   Separation axioms in (semi)topological quotient BL-algebras [J].
Borzooei, R. A. ;
Rezaei, G. R. ;
Kouhestani, N. .
SOFT COMPUTING, 2012, 16 (07) :1219-1227
[5]  
Borzooei R.A., 2019, Quasigroup Related Systems, V27, P161
[6]   CONCERNING CONE ALGEBRAS [J].
BOSBACH, B .
ALGEBRA UNIVERSALIS, 1982, 15 (01) :58-66
[7]  
DRINFELD VG, 1992, LECT NOTES MATH, V1510, P1
[8]   Set-theoretical solutions to the quantum Yang-Baxter equation [J].
Etingof, P ;
Schedler, T ;
Soloviev, A .
DUKE MATHEMATICAL JOURNAL, 1999, 100 (02) :169-209
[9]  
Etingof P, 1998, MATH RES LETT, V5, P551
[10]   Geometric crystals and set-theoretical solutions to the quantum Yang-Baxter equation [J].
Etingof, P .
COMMUNICATIONS IN ALGEBRA, 2003, 31 (04) :1961-1973