Texture-Based Image Transformations for Improved Deep Learning Classification

被引:1
作者
Majtner, Tomas [1 ]
Bajic, Buda [2 ]
Herp, Jurgen [3 ]
机构
[1] Masaryk Univ, Cent European Inst Technol CEITEC, Brno, Czech Republic
[2] Univ Novi Sad, Fac Tech Sci, Novi Sad, Serbia
[3] Univ Southern Denmark, Odense, Denmark
来源
PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2021 | 2021年 / 12702卷
关键词
Texture recognition; Image processing; Transfer learning; HSV colour model; FEATURES;
D O I
10.1007/978-3-030-93420-0_20
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we examine the effect of texture-based image transformation on classification performance. A novel combination of mathematical morphology operations and contrast-limited adaptive histogram equalization is proposed to enhance image textural features. The suggested operations are applied in HSV colour space, where the intensity component is separated from the colour information. Two publicly available, texture-oriented datasets are used for evaluation in this study. The KTH-TIPS2-b dataset is utilised to illustrate the general effectiveness and applicability of the proposed solution on standardized texture images. The Virus Texture dataset is subsequently used to demonstrate a statistically significant classification improvement in a particular biomedical image recognition task.
引用
收藏
页码:207 / 216
页数:10
相关论文
共 24 条
  • [1] Andrearczyk V, 2017, ELS MIC SOC BOOK SER, P95, DOI 10.1016/B978-0-12-812133-7.00004-1
  • [2] Generalised deep learning framework for HEp-2 cell recognition using local binary pattern maps
    Bajic, Buda
    Majtner, Tomas
    Lindblad, Joakim
    Sladoje, Natasa
    [J]. IET IMAGE PROCESSING, 2020, 14 (06) : 1201 - 1208
  • [3] Cheng JZ, 2017, ELS MIC SOC BOOK SER, P247, DOI 10.1016/B978-0-12-812133-7.00009-0
  • [4] Faraki M, 2015, INT CONF ACOUST SPEE, P1364, DOI 10.1109/ICASSP.2015.7178193
  • [5] Geirhos R, 2019, Arxiv, DOI arXiv:1811.12231
  • [6] Jintasuttisak T, 2014, INT C CONTR AUTOMAT, P692, DOI 10.1109/ICCAS.2014.6987868
  • [7] An Efficient Method for Automatic Recognition of Virus Particles in TEM Images
    Kumar, Debamita
    Maji, Pradipta
    [J]. PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2019, PT II, 2019, 11942 : 21 - 31
  • [8] Segmentation of virus particle candidates in transmission electron microscopy images
    Kylberg, G.
    Uppstrom, M.
    Hedlund, K. -O.
    Borgefors, G.
    Sintorn, I. -M.
    [J]. JOURNAL OF MICROSCOPY, 2012, 245 (02) : 140 - 147
  • [9] Kylberg G, 2011, LECT NOTES COMPUT SC, V7042, P573, DOI 10.1007/978-3-642-25085-9_68
  • [10] CDF Space Covariance Matrix of Gabor Wavelet With Convolutional Neural Network for Texture Recognition
    Li, Chaorong
    Guan, Xiaoyun
    Yang, Peihui
    Huang, Yuanyuan
    Huang, Wei
    Chen, Huafu
    [J]. IEEE ACCESS, 2019, 7 : 30693 - 30701