Existence and asymptotic behavior of solutions for nonhomogeneous Schrödinger-Poisson system with exponential and logarithmic nonlinearities

被引:0
作者
Lu, Xiaoli [1 ]
Zhang, Jing [1 ,2 ,3 ]
机构
[1] Inner Mongolia Normal Univ, Coll Math Sci, Hohhot, Peoples R China
[2] Inner Mongolia Normal Univ, Key Lab Infinite Dimens Hamiltonian Syst & Its Alg, Minist Educ, Hohhot, Peoples R China
[3] Inner Mongolia Normal Univ, Ctr Appl Math Inner Mongolia, Hohhot, Peoples R China
关键词
Exponential critical growth; logarithmic nonlinearity; Ekeland's variational principle; Mountain Pass theorem; SCHRODINGER-POISSON SYSTEM; MULTIPLE POSITIVE SOLUTIONS; EQUATION;
D O I
10.1007/s11784-024-01122-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following nonhomogeneous quasilinear Schr & ouml;dinger-Poisson system with exponential and logarithmic nonlinearities -Delta u+phi u=|u|p-2ulog|u|2+lambda f(u)+h(x),in Omega,-Delta phi-epsilon 4 Delta 4 phi=u2,in Omega,u=phi=0,on partial derivative Omega,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta u+\phi u =|u|<^>{p-2}u\log |u|<^>2 +\lambda f(u) +h(x),&{} \textrm{in} \hspace{5.0pt}\Omega ,\\ -\Delta \phi -\varepsilon <^>4 \Delta _4 \phi =u<^>2,&{} \textrm{in}\hspace{5.0pt}\Omega ,\\ u=\phi =0,&{} \textrm{on}\hspace{5.0pt}\partial \Omega ,\\ \end{array} \right. \end{aligned}$$\end{document}where 4<p<+infinity,epsilon,lambda>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4<p<+\infty ,\,\varepsilon ,\,\lambda >0$$\end{document} are parameters, Delta 4 phi=div(|del phi|2 del phi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{\Delta _4 \phi = div(|\nabla \phi |<^>2 \nabla \phi )}$$\end{document}, Omega subset of R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {\mathbb {R}}<^>2$$\end{document} is a bounded domain, and f has exponential critical growth. First, using reduction argument, truncation technique, Ekeland's variational principle, and the Mountain Pass theorem, we obtain that the above system admits at least two solutions with different energy for lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} large enough and epsilon\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} fixed. Finally, we research the asymptotic behavior of solutions with respect to the parameters epsilon\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}.
引用
收藏
页数:22
相关论文
共 38 条
[1]   Existence of a positive solution for a logarithmic Schrodinger equation with saddle-like potential [J].
Alves, Claudianor O. ;
Ji, Chao .
MANUSCRIPTA MATHEMATICA, 2021, 164 (3-4) :555-575
[2]   Existence and concentration of positive solutions for a logarithmic Schrodinger equation via penalizationmethod [J].
Alves, Claudianor O. ;
Ji, Chao .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (01)
[3]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[4]   Solitons and the electromagnetic field [J].
Benci, V ;
Fortunato, D ;
Masiello, A ;
Pisani, L .
MATHEMATISCHE ZEITSCHRIFT, 1999, 232 (01) :73-102
[5]   Existence and asymptotic behaviour of standing waves for quasilinear Schrodinger-Poisson systems in R3 [J].
Benmlih, Khalid ;
Kavian, Otared .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (03) :449-470
[6]   Multiple positive solutions of a class of non autonomous Schrodinger-Poisson systems [J].
Chen, Jianqing .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 21 :13-26
[7]   The existence of sign-changing solution for a class of quasilinear Schrodinger-Poisson systems via perturbation method [J].
Chen, Lizhen ;
Feng, Xiaojing ;
Hao, Xinan .
BOUNDARY VALUE PROBLEMS, 2019, 2019 (01)
[8]   Axially symmetric solutions for the planar Schrodinger-Poisson system with critical exponential growth [J].
Chen, Sitong ;
Tang, Xianhua .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (11) :9144-9174
[9]   On a quasilinear logarithmic N-dimensional equation involving exponential growth [J].
de Albuquerque, J. C. ;
Carvalho, J. L. ;
Souza Filho, A. P. F. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 519 (01)
[10]   MULTIPLE SOLUTIONS FOR NONHOMOGENEOUS SCHRODINGER-POISSON SYSTEMS WITH THE ASYMPTOTICAL NONLINEARITY IN R3 [J].
Ding, Ling ;
Li, Lin ;
Zhang, Jing-Ling .
TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (05) :1627-1650