Electronic and electrochemical properties of Li2XO3 (X = Mn, Cr and Fe) cathode materials for lithium-ion batteries: Density functional theory

被引:5
作者
Thajitr, W. [1 ]
Busayaporn, W. [2 ]
Sukkabot, W. [1 ]
机构
[1] Ubon Ratchathani Univ, Fac Sci, Dept Phys, 85 Sathollmark Rd Warinchamrab, Ubon Ratchathani 34190, Thailand
[2] Synchrotron Light Res Inst Publ Org, Nakhon Ratchasima 30000, Thailand
关键词
Spin density functional theory; Cathode; Li -ion diffusion; Electronic properties; Electrochemical properties; SELECTING SUBSTITUENT ELEMENTS; INITIO MOLECULAR-DYNAMICS; AB-INITIO; CO ELECTRODES; LI2MNO3; CAPACITY; OXIDE; NI; PERFORMANCE; TRANSITION;
D O I
10.1016/j.cjph.2023.07.026
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Li2MnO3 is one of the most promising cathodes utilized for Li-ion battery technology because of the high storage capacity. However, the drawbacks such as low conductivity and oxygen removal reaction make it less attractive than general cathode materials. This work aims to improve these properties of Li2MnO3 cathode material by substituting Mn with Cr and Fe. The spin-polarized density functional theory (DFT+U) is utilized to calculate the electronic and electrochemical properties such as cell volumes, band gaps, density of states, stability voltages, energy barriers against Li+ transfer, oxygen removal reaction in Li2XO3 (X = Mn, Cr and Fe) cathodes. The calculations highlight that type of the transition metals is beneficial for manipulating and improving the electronic and electrochemical properties. Regarding the optimistic trend of the calculations, the scientific scheme is valuable to advise the discovery and design of the Lithiumrich layered transition metal oxides.
引用
收藏
页码:104 / 110
页数:7
相关论文
共 41 条
[1]   Study of the electrochemical behavior of the "inactive" Li2MnO3 [J].
Amalraj, S. Francis ;
Markovsky, Boris ;
Sharon, Daniel ;
Talianker, Michael ;
Zinigrad, Ella ;
Persky, Rachel ;
Haik, Ortal ;
Grinblat, Judith ;
Lampert, Jordan ;
Schulz-Dobrick, Martin ;
Garsuch, Arnd ;
Burlaka, Luba ;
Aurbach, Doron .
ELECTROCHIMICA ACTA, 2012, 78 :32-39
[2]   Structural, Electrical, and Lithium Ion Dynamics of Li2MnO3 from Density Functional Theory [J].
Chen Yong-Chang ;
Huo Miao ;
Liu Yang ;
Chen Tong ;
Leng Cheng-Cai ;
Li Qiang ;
Sun Zhao-Lin ;
Song Li-Juan .
CHINESE PHYSICS LETTERS, 2015, 32 (01)
[3]   Systematic density functional theory investigations on cubic lithiumrich iron-based Li2FeO3: A multiple electrons cationic and anionic redox cathode material [J].
Chen, Yuyang ;
Xia, Dingguo .
ETRANSPORTATION, 2021, 10
[4]   Influence of Cationic Substitutions on the Oxygen Loss and Reversible Capacity of Lithium-Rich Layered Oxide Cathodes [J].
Deng, Z. Q. ;
Manthiram, A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (14) :7097-7103
[5]   Selecting Substituent Elements for Li-Rich Mn-Based Cathode Materials by Density Functional Theory (DFT) Calculations [J].
Gao, Yurui ;
Wang, Xuefeng ;
Ma, Jun ;
Wang, Zhaoxiang ;
Chen, Liquan .
CHEMISTRY OF MATERIALS, 2015, 27 (09) :3456-3461
[6]   Improved electron/Li-ion transport and oxygen stability of Mo-doped Li2MnO3 [J].
Gao, Yurui ;
Ma, Jun ;
Wang, Xuefeng ;
Lu, Xia ;
Bai, Ying ;
Wang, Zhaoxiang ;
Chen, Liquan .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (13) :4811-4818
[7]   Sol-Gel Combustion Synthesis of Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials for Lithium Ion Batteries [J].
He, Dingzeng ;
Guo, Qixun ;
Yin, Hao ;
Li, Juntao ;
Gong, Zhengliang .
INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2017, 12 (01) :455-465
[8]   A climbing image nudged elastic band method for finding saddle points and minimum energy paths [J].
Henkelman, G ;
Uberuaga, BP ;
Jónsson, H .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (22) :9901-9904
[9]   Commentary: The Materials Project: A materials genome approach to accelerating materials innovation [J].
Jain, Anubhav ;
Shyue Ping Ong ;
Hautier, Geoffroy ;
Chen, Wei ;
Richards, William Davidson ;
Dacek, Stephen ;
Cholia, Shreyas ;
Gunter, Dan ;
Skinner, David ;
Ceder, Gerbrand ;
Persson, Kristin A. .
APL MATERIALS, 2013, 1 (01)
[10]   Lithium metal rechargeable cells using Li2MnO3 as the positive electrode [J].
Kalyani, P ;
Chitra, S ;
Mohan, T ;
Gopukumar, S .
JOURNAL OF POWER SOURCES, 1999, 80 (1-2) :103-106