共 16 条
- [1] LIU F T, TING K M, ZHOU Z H., Isolation forest, Proceedings of the 2008 8th IEEE International Conference on Data Mining, pp. 413-422, (2008)
- [2] ZHANG J, JONES K, SONG T Y, Et al., Comparing unsupervised learning approaches to detect network intrusion using netflow data, Proceedings of the 2017 Systems and Information Engineering Design Symposium, pp. 122-127, (2017)
- [3] ESKIN E, ARNOLD A, PRERAU M, Et al., A geometric framework for unsupervised anomaly detection, Applications of Data Mining in Computer Security, pp. 77-101, (2002)
- [4] RINGBERG H, SOULE A, REXFORD J, Et al., Sensitivity of PCA for traffic anomaly detection, Proceedings of the 2007 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, pp. 109-120, (2007)
- [5] PASCOAL C, DE OLIVEIRA M R, VALADAS R, Et al., Robust feature selection and robust PCA for internet traffic anomaly detection, 2012 Proceedings IEEE INFOCOM, pp. 1755-1763, (2012)
- [6] MIRZA A H, COSAN S., Computer network intrusion detection using sequential LSTM neural networks autoencoders, Proceedings of the 2018 26th Signal Processing and Communications Applications Conference, pp. 1-4, (2018)
- [7] MUNZ G, LI S, CARLE G., Traffic anomaly detection using k-means clustering, Proceedings of Leistungs-, Zuverlässigkeits- und Verlässlichkeitsbewertung von Kommunikationsnetzen und Verteilten Systemen, 4 GI/ITG Workshop MMBnet, pp. 13-14, (2007)
- [8] BOHARA A, THAKORE U, SANDERS W H., Intrusion detection in enterprise systems by combining and clustering diverse monitor data, Proceedings of the Symposium and Bootcamp on the Science of Security, pp. 7-16, (2016)
- [9] VINCENT P, LAROCHELLE H, LAJOIE I, Et al., Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion, Journal of Machine Learning Research, 11, pp. 3371-3408, (2010)
- [10] MANDIC D P, CHAMBERS J., Recurrent neural networks for prediction: Learning algorithms, architectures and stability, (2001)