p-adic Bessel α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-potentials and some of their applications

被引:0
作者
Anselmo Torresblanca-Badillo [1 ]
J. E. Ospino [2 ]
Francisco Arias [1 ]
机构
[1] Universidad del Norte,Departamento de Matemáticas y Estadística
[2] Universidad del Atlántico,Programa de Matemáticas
关键词
-adic analysis; Pseudo-differential operators; Sobolev spaces; Markov processes; Heat kernel; Feller semigroups;
D O I
10.1007/s11868-024-00613-2
中图分类号
学科分类号
摘要
In this article, we will study a class of pseudo-differential operators on p-adic numbers, which we will call p-adic Bessel α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-potentials. These operators are denoted and defined in the form (Eϕ,αf)(x)=-Fζ→x-1max{1,|ϕ(||ζ||p)|}-αf^(ζ),x∈Qpn,α∈R,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (\mathcal {E}_{\varvec{\phi },\alpha }f)(x)=-\mathcal {F}^{-1}_{\zeta \rightarrow x}\left( \left[ \max \{1,|\varvec{\phi }(||\zeta ||_{p})|\} \right] ^{-\alpha }\widehat{f}(\zeta )\right) , \text { } x\in {\mathbb {Q}}_{p}^{n}, \ \ \alpha \in \mathbb {R}, \end{aligned}$$\end{document}where f is a p-adic distribution and max{1,|ϕ(||ζ||p)|}-α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left[ \max \{1,|\varvec{\phi }(||\zeta ||_{p})|\}\right] ^{-\alpha }$$\end{document} is the symbol of the operator. We will study some properties of the convolution kernel (denoted as Kα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{\alpha }$$\end{document}) of the pseudo-differential operator Eϕ,α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {E}_{\varvec{\phi },\alpha }$$\end{document}, α∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in \mathbb {R}$$\end{document}; and demonstrate that the family (Kα)α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(K_{\alpha })_{\alpha >0}$$\end{document} determines a convolution semigroup on Qpn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Q}_{p}^{n}$$\end{document}. Furthermore, we will introduce new types of Feller semigroups, and explore new Markov processes and non-homogeneous initial value problems on p-adic numbers.
引用
收藏
相关论文
共 35 条
[1]  
Albeverio S(2006)Harmonic analysis in the J. Fourier Anal. Appl. 12 393-425
[2]  
Khrennikov AYu(2019)adic Lizorkin spaces: Fractional operators, pseudo-differential equations, Rep. Math. Phys. 84 1-34
[3]  
Shelkovich VM(1998)adic wavelets, Tauberian theorems. Acta Math. Sinica 14 327-340
[4]  
Arroyo-Ortiz E(1999)Construction of TMF 119 249-263
[5]  
Zúñiga-Galindo WA(2021)-adic covariant quantum fields in the framework of white noise analysis Axioms 10 1-20
[6]  
Baoxiang W(2021)Bessel (Riesz) potentials on banach function spaces and their applications I theory Int. Transf. Spec. Funct. 32 932-947
[7]  
Bikulov AKh(2020)Stochastic J. Pseudo-Differ. Oper. Appl. 11 679-698
[8]  
Dzhabrailov A(1961)-adic equations of mathematical physics Pacific J. Math. 40 1227-1242
[9]  
Luchko Y(2014)Two forms of an inverse operator to the generalized Bessel potential Bull. Iran. Math. Soc. 26 799-813
[10]  
Shishkina E(2013)Generalized Bessel potential and its application to non-homogeneous singular screened Poisson equation Revista matemática complutense 246 407-420