THE EXISTENCE AND HYERS-ULAM STABILITY OF SOLUTION FOR AN IMPULSIVE TYPES AMBARTSUMIAN EQUATION VIA Ξ-HILFER GENERALIZED PROPORTIONAL FRACTIONAL DERIVATIVE

被引:0
作者
Manikandan, S. [1 ]
Vivek, D. [2 ]
Kanagarajan, K. [1 ]
Elsayed, E. M. [3 ,4 ]
机构
[1] Sri Ramakrishna Mission Vidyalaya Coll Arts & Sci, Dept Math, Coimbatore 641020, India
[2] PSG Coll Arts & Sci, Dept Math, Coimbatore 641014, India
[3] King AbdulAziz Univ, Fac Sci, Math Dept, POB 80203, Jeddah 21589, Saudi Arabia
[4] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
来源
MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS | 2024年 / 91卷
关键词
Ambartsumian equation; impulsive; proportional fractional derivative; existence; uniqueness; Ulam-Hyers-Rassias stability;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate some existence and Ulam's type stability concepts of fixed point for a class of Ambartsumian equations with impulses via Xi-Hilfer generalized proportional fractional derivative (PFD). Our results are obtained by using standard fixed point theorems.
引用
收藏
页码:105 / 120
页数:16
相关论文
共 23 条
  • [1] Fractional Integro-Differential Equations Involving ψ-Hilfer Fractional Derivative
    Abdo, Mohammed S.
    Panchal, Satish K.
    [J]. ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2019, 11 (02) : 338 - 359
  • [2] A study of fractional order Ambartsumian equation involving exponential decay kernel
    Ahmad, Shabir
    Ullah, Aman
    Akgul, Ali
    De la Sen, Manuel
    [J]. AIMS MATHEMATICS, 2021, 6 (09): : 9981 - 9997
  • [3] On Hilfer generalized proportional fractional derivative
    Ahmed, Idris
    Kumam, Poom
    Jarad, Fahd
    Borisut, Piyachat
    Jirakitpuwapat, Wachirapong
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [4] EXISTENCE OF SOLUTIONS OF NONLINEAR FRACTIONAL PANTOGRAPH EQUATIONS
    Balachandran, K.
    Kiruthika, S.
    Trujillo, J. J.
    [J]. ACTA MATHEMATICA SCIENTIA, 2013, 33 (03) : 712 - 720
  • [5] Ulam-Hyers-Rassias Stability for a Class of Fractional Integro-Differential Equations
    Capelas de Oliveira, E.
    Sousa, J. Vanterler da C.
    [J]. RESULTS IN MATHEMATICS, 2018, 73 (03)
  • [6] Kucche KD, 2019, Arxiv, DOI arXiv:1901.01814
  • [7] Existence and uniqueness for a problem involving Hilfer fractional derivative
    Furati, K. M.
    Kassim, M. D.
    Tatar, N. E-
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (06) : 1616 - 1626
  • [8] More properties of the proportional fractional integrals and derivatives of a function with respect to another function
    Jarad, Fahd
    Abdeljawad, Thabet
    Rashid, Saima
    Hammouch, Zakia
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [9] On more general forms of proportional fractional operators
    Jarad, Fahd
    Alqudah, Manar A.
    Abdeljawad, Thabet
    [J]. OPEN MATHEMATICS, 2020, 18 : 167 - 176
  • [10] On the generalized fractional derivatives and their Caputo modification
    Jarad, Fahd
    Abdeljawad, Thabet
    Baleanu, Dumitru
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (05): : 2607 - 2619