On the Gromov hyperbolicity of the minimal metric

被引:0
作者
Fiacchi, Matteo [1 ,2 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Jadranska 19, Ljubljana 1000, Slovenia
[2] Inst Math Phys & Mech, Ljubljana 191000, Slovenia
基金
欧洲研究理事会;
关键词
Minimal surface; Minimal metric; Hyperbolic domain; Gromov hyperbolicity; Convex domain; Hilbert metric; CONVEX DOMAINS; MAPS;
D O I
10.1007/s00209-024-03581-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the hyperbolicity in the sense of Gromov of domains in R-d (d >= 3) with respect to the minimal metric introduced by Forstneric and Kalaj (Anal PDE 17(3):981-1003, 2024). In particular, we prove that every bounded strongly minimally convex domain is Gromov hyperbolic and its Gromov compactification is equivalent to its Euclidean closure. Moreover, we prove that the boundary of a Gromov hyperbolic convex domain does not contain non-trivial conformal harmonic disks. Finally, we study the relation between the minimal metric and the Hilbert metric in convex domains.
引用
收藏
页数:20
相关论文
共 24 条
[1]  
Alarcn A., 2021, SPRINGER MONOGRAPHS, DOI 10.1007/978-3-030-69056-4
[2]   Backward dynamics of non-expanding maps in Gromov hyperbolic metric spaces [J].
Arosio, Leandro ;
Fiacchi, Matteo ;
Guerini, Lorenzo ;
Karlsson, Anders .
ADVANCES IN MATHEMATICS, 2024, 439
[3]   Worm Domains are not Gromov Hyperbolic [J].
Arosio, Leandro ;
Dall'Ara, Gian Maria ;
Fiacchi, Matteo .
JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (08)
[4]   The horofunction boundary of a Gromov hyperbolic space [J].
Arosio, Leandro ;
Fiacchi, Matteo ;
Gontard, Sebastien ;
Guerini, Lorenzo .
MATHEMATISCHE ANNALEN, 2024, 388 (02) :1163-1204
[5]   Gromov hyperbolicity and the Kobayashi metric on strictly pseudoconvex domains [J].
Balogh, ZM ;
Bonk, M .
COMMENTARII MATHEMATICI HELVETICI, 2000, 75 (03) :504-533
[6]  
Benoist Y, 2003, PUBL MATH, V97, P181, DOI 10.1007/s10240-003-0012-4
[7]   Embeddings of Gromov hyperbolic spaces [J].
Bonk, M ;
Schramm, O .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2000, 10 (02) :266-306
[8]   Visibility of Kobayashi geodesics in convex domains and related properties [J].
Bracci, Filippo ;
Nikolov, Nikolai ;
Thomas, Pascal J. .
MATHEMATISCHE ZEITSCHRIFT, 2022, 301 (02) :2011-2035
[9]  
Bracci F, 2021, MATH ANN, V379, P691, DOI 10.1007/s00208-020-01954-1
[10]  
Bracci F, 2018, MATH ANN, V372, P845, DOI 10.1007/s00208-017-1581-8