Energy-Efficient Optimization for Mobile Edge Computing With Quantum Machine Learning

被引:7
作者
Adu Ansere, James [1 ]
Tran, Dung T. [2 ]
Dobre, Octavia A. [3 ]
Shin, Hyundong [4 ]
Karagiannidis, George K. [5 ,6 ]
Duong, Trung Q. [7 ,8 ]
机构
[1] Sunyani Tech Univ, Sunyani, Ghana
[2] Duy Tan Univ, Da Nang 50000, Vietnam
[3] Mem Univ Newfoundland, Elect & Comp Engn Dept, St John, NF A1B 3X5, Canada
[4] Kyung Hee Univ, Dept Elect & Informat Convergence Engn, Seoul 02447, South Korea
[5] Aristotle Univ Thessaloniki, Dept Elect & Comp Engn, Thessaloniki 54124, Greece
[6] Lebanese Amer Univ, Artificial Intelligence & Cyber Syst Res Ctr, Beirut 11022801, Lebanon
[7] Mem Univ Newfoundland, St John, NF A1B 3X5, Canada
[8] Queens Univ Belfast, Belfast BT7 1NN, Antrim, North Ireland
基金
加拿大自然科学与工程研究理事会;
关键词
Task analysis; Internet of Things; Servers; Energy efficiency; Energy consumption; Quantum computing; Computational modeling; Quantum reinforcement learning; IoT; MEC; JOINT OPTIMIZATION;
D O I
10.1109/LWC.2023.3338571
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We investigate the joint optimization problem of stochastic computation offloading, content caching strategy, and dynamic resource allocation to maximize the energy efficiency of mobile edge computing in Internet-of-Things. Specifically, we propose a quantum deep reinforcement learning algorithm to exponentially increase the caching learning speed and content caching delivery efficiency in multi-dimensional continuous and large action spaces. Furthermore, we utilize the modified Grover's algorithm with faster computation time to improve the processing efficiency and data-content retrieval for transition quantum state probabilities. The numerical results show that our proposed quantum machine learning scheme significantly outperforms other benchmarks in terms of energy-efficiency maximization subject to transmission power, energy consumption, and transmission latency.
引用
收藏
页码:661 / 665
页数:5
相关论文
共 13 条
[1]  
Ansere J. A., 2023, PROC INT WIRELESS CO, P1
[2]   Quantum Deep Reinforcement Learning for Dynamic Resource Allocation in Mobile Edge Computing-Based IoT Systems [J].
Ansere, James Adu ;
Gyamfi, Eric ;
Sharma, Vishal ;
Shin, Hyundong ;
Dobre, Octavia A. ;
Duong, Trung Q. .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (06) :6221-6233
[3]   Optimal Computation Resource Allocation in Energy-Efficient Edge IoT Systems With Deep Reinforcement Learning [J].
Ansere, James Adu ;
Gyamfi, Eric ;
Li, Yijiu ;
Shin, Hyundong ;
Dobre, Octavia A. ;
Hoang, Trang ;
Duong, Trung Q. .
IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, 2023, 7 (04) :2130-2142
[4]   Joint Optimization of Service Caching Placement and Computation Offloading in Mobile Edge Computing Systems [J].
Bi, Suzhi ;
Huang, Liang ;
Zhang, Ying-Jun Angela .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (07) :4947-4963
[5]   Integrated Task Caching, Computation Offloading and Resource Allocation for Mobile Edge Computing [J].
Chen, Zhixiong ;
Chen, Zhengchuan ;
Jia, Yunjian .
2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
[6]   Quantum-Inspired Machine Learning for 6G: Fundamentals, Security, Resource Allocations, Challenges, and Future Research Directions [J].
Duong, Trung Q. ;
Ansere, James Adu ;
Narottama, Bhaskara ;
Sharma, Vishal ;
Dobre, Octavia A. ;
Shin, Hyundong .
IEEE OPEN JOURNAL OF VEHICULAR TECHNOLOGY, 2022, 3 :375-387
[7]  
Hu D., 2021, IEEE GLOB COMMUN C, P1
[8]   Dynamic Task Offloading in MEC-Enabled IoT Networks: A Hybrid DDPG-D3QN Approach [J].
Hu, Han ;
Wu, Dingguo ;
Zhou, Fuhui ;
Jin, Shi ;
Hu, Rose Qingyang .
2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
[9]   Intelligent Trajectory Planning in UAV-Mounted Wireless Networks: A Quantum-Inspired Reinforcement Learning Perspective [J].
Li, Yuanjian ;
Aghvami, A. Hamid ;
Dong, Daoyi .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (09) :1994-1998
[10]  
Nielsen M A., 2012, Quantum Computation and Quantum Information: 10th Anniversary Edition 1sted