Escaping local minima with quantum circuit coherent cooling

被引:1
作者
Feng, Jia-Jin [1 ,2 ]
Wu, Biao [1 ,3 ,4 ]
机构
[1] Peking Univ, Int Ctr Quantum Mat, Sch Phys, Beijing 100871, Peoples R China
[2] Univ Southern Calif, Ming Hsieh Dept Elect & Comp Engn, Los Angeles, CA 90089 USA
[3] Shanghai Jiao Tong Univ, Wilczek Quantum Ctr, Sch Phys & Astron, Shanghai 200240, Peoples R China
[4] Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
WALKS; OPTIMIZATION; ALGORITHMS;
D O I
10.1103/PhysRevA.109.032405
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum cooling has demonstrated its potential in quantum computing, which can reduce the number of control channels needed for external signals. Recent progress also supports the possibility of maintaining quantum coherence in large-scale systems. The limitations of classical algorithms trapped in the local minima of cost functions could be overcome using this scheme. According to this, we propose a hybrid quantum -classical algorithm for finding the global minima. Our approach utilizes quantum coherent cooling to facilitate coordinative tunneling through energy barriers if the classical algorithm gets stuck. The encoded Hamiltonian system represents the cost function, and a quantum coherent bath in the ground state serves as a heat sink to absorb energy from the system. Our proposed scheme can be implemented in the circuit quantum electrodynamics system using a quantum cavity. The provided numerical evidence demonstrates the quantum advantage in solving spin -glass problems.
引用
收藏
页数:11
相关论文
共 93 条
[1]   Colloquium: Many-body localization, thermalization, and entanglement [J].
Abanin, Dmitry A. ;
Altman, Ehud ;
Bloch, Immanuel ;
Serbyn, Maksym .
REVIEWS OF MODERN PHYSICS, 2019, 91 (02)
[2]   Quantum error correction for continuously detected errors [J].
Ahn, C ;
Wiseman, HM ;
Milburn, GJ .
PHYSICAL REVIEW A, 2003, 67 (05) :11
[3]   Localization and Mitigation of Loss in Niobium Superconducting Circuits [J].
Altoe, M. Virginia P. ;
Banerjee, Archan ;
Berk, Cassidy ;
Hajr, Ahmed ;
Schwartzberg, Adam ;
Song, Chengyu ;
Alghadeer, Mohammed ;
Aloni, Shaul ;
Elowson, Michael J. ;
Kreikebaum, John Mark ;
Wong, Ed K. ;
Griffin, Sinead M. ;
Rao, Saleem ;
Weber-Bargioni, Alexander ;
Minor, Andrew M. ;
Santiago, David, I ;
Cabrini, Stefano ;
Siddiqi, Irfan ;
Ogletree, D. Frank .
PRX QUANTUM, 2022, 3 (02)
[4]   Cavity optomechanics [J].
Aspelmeyer, Markus ;
Kippenberg, Tobias J. ;
Marquardt, Florian .
REVIEWS OF MODERN PHYSICS, 2014, 86 (04) :1391-1452
[5]   Noisy intermediate-scale quantum algorithms [J].
Bharti, Kishor ;
Cervera-Lierta, Alba ;
Kyaw, Thi Ha ;
Haug, Tobias ;
Alperin-Lea, Sumner ;
Anand, Abhinav ;
Degroote, Matthias ;
Heimonen, Hermanni ;
Kottmann, Jakob S. ;
Menke, Tim ;
Mok, Wai-Keong ;
Sim, Sukin ;
Kwek, Leong-Chuan ;
Aspuru-Guzik, Alan .
REVIEWS OF MODERN PHYSICS, 2022, 94 (01)
[6]   Quantum-information processing with circuit quantum electrodynamics [J].
Blais, Alexandre ;
Gambetta, Jay ;
Wallraff, A. ;
Schuster, D. I. ;
Girvin, S. M. ;
Devoret, M. H. ;
Schoelkopf, R. J. .
PHYSICAL REVIEW A, 2007, 75 (03)
[7]   Circuit quantum electrodynamics [J].
Blais, Alexandre ;
Grimsmo, Arne L. ;
Girvin, S. M. ;
Wallraffe, Andreas .
REVIEWS OF MODERN PHYSICS, 2021, 93 (02)
[8]   Logical quantum processor based on reconfigurable atom arrays [J].
Bluvstein, Dolev ;
Evered, Simon J. ;
Geim, Alexandra A. ;
Li, Sophie H. ;
Zhou, Hengyun ;
Manovitz, Tom ;
Ebadi, Sepehr ;
Cain, Madelyn ;
Kalinowski, Marcin ;
Hangleiter, Dominik ;
Ataides, J. Pablo Bonilla ;
Maskara, Nishad ;
Cong, Iris ;
Gao, Xun ;
Sales Rodriguez, Pedro ;
Karolyshyn, Thomas ;
Semeghini, Giulia ;
Gullans, Michael J. ;
Greiner, Markus ;
Vuletic, Vladan ;
Lukin, Mikhail D. .
NATURE, 2024, 626 (7997) :58-65
[9]   Improving the variable ordering of OBDDs is NP-complete [J].
Bollig, B ;
Wegener, I .
IEEE TRANSACTIONS ON COMPUTERS, 1996, 45 (09) :993-1002
[10]   PATH INTEGRAL APPROACH TO QUANTUM BROWNIAN-MOTION [J].
CALDEIRA, AO ;
LEGGETT, AJ .
PHYSICA A, 1983, 121 (03) :587-616