Superlattice engineering of topology in massive Dirac fermions

被引:7
作者
Suri N. [1 ,2 ,3 ]
Wang C. [4 ]
Hunt B.M. [3 ]
Xiao D. [4 ,5 ]
机构
[1] QuAIL, Nasa Ames Research Center, Moffett Field, 94035, CA
[2] Usra Research Institute for Advanced Computer Science, Mountain View, 94043, CA
[3] Department of Physics, Carnegie Mellon University, Pittsburgh, 15213, PA
[4] Department of Materials Science and Engineering, University of Washington, Seattle, 98195, WA
[5] Department of Physics, University of Washington, Seattle, 98195, WA
基金
美国国家航空航天局;
关键词
C (programming language) - Graphene - III-V semiconductors - Quantum Hall effect - Quantum theory - Spin Hall effect - Transition metals - Valence bands;
D O I
10.1103/PhysRevB.108.155409
中图分类号
学科分类号
摘要
We show that a superlattice potential can be employed to engineer topology in massive Dirac fermions in systems such as bilayer graphene, moiré graphene-boron nitride, and transition-metal dichalcogenide (TMD) monolayers and bilayers. We use symmetry analysis to analyze band inversions to determine the Chern number C for the valence band as a function of tunable potential parameters for a class of C4 and C3 symmetric potentials. We present a method to engineer Chern number C=2 for the valence band and show that the applied potential at minimum must have a scalar together with a nonscalar periodic part. We discover that certain forms of the superlattice potential, which may be difficult to realize in naturally occurring moiré patterns, allow for the possibility of nontrivial topological transitions. These forms may be achievable using an external superlattice potential that can be created using contemporary experimental techniques. Our paper paves the way to realize the quantum spin Hall effect (QSHE), quantum anomalous Hall effect (QAHE), and even exotic non-Abelian anyons in the fractional quantum Hall effect (FQHE). © 2023 American Physical Society.
引用
收藏
相关论文
共 54 条
[21]  
Reyren N., Thiel S., Caviglia A., Kourkoutis L. F., Hammerl G., Richter C., Schneider C. W., Kopp T., Ruetschi A.-S., Jaccard D., Superconducting interfaces between insulating oxides, Science, 317, (2007)
[22]  
Caviglia A., Gariglio S., Reyren N., Jaccard D., Schneider T., Gabay M., Thiel S., Hammerl G., Mannhart J., Triscone J.-M., Electric field control of the (Equation presented) interface ground state, Nature (London), 456, (2008)
[23]  
Cen C., Thiel S., Hammerl G., Schneider C. W., Andersen K., Hellberg C. S., Mannhart J., Levy J., Nanoscale control of an interfacial metal-insulator transition at room temperature, Nat. Mater, 7, (2008)
[24]  
Cen C., Thiel S., Mannhart J., Levy J., Oxide nanoelectronics on demand, Science, 323, (2009)
[25]  
Bi F., Bogorin D. F., Cen C., Bark C. W., Park J.-W., Eom C.-B., Levy J., Water-cycle" mechanism for writing and erasing nanostructures at the (Equation presented) interface, Appl. Phys. Lett, 97, (2010)
[26]  
Yang D., Hao S., Chen J., Guo Q., Yu M., Hu Y., Eom K., Lee J.-W., Eom C.-B., Irvin P., Nanoscale control of (Equation presented) metal-insulator transition using ultra-low-voltage electron-beam lithography, Appl. Phys. Lett, 117, (2020)
[27]  
Tang Y., Tylan-Tyler A., Lee H., Lee J.-W., Tomczyk M., Huang M., Eom C.-B., Irvin P., Levy J., Long-range non-Coulombic electron-electron interactions between (Equation presented) nanowires, Adv. Mater. Interfac, 6, (2019)
[28]  
Tang Y., Lee J.-W., Tylan-Tyler A., Lee H., Tomczyk M., Huang M., Eom C.-B., Irvin P., Levy J., Frictional drag between superconducting (Equation presented) nanowires, Semicond. Sci. Technol, 35, (2020)
[29]  
Briggeman M., Tomczyk M., Tian B., Lee H., Lee J.-W., He Y., Tylan-Tyler A., Huang M., Eom C.-B., Pekker D., Pascal conductance series in ballistic one-dimensional (Equation presented) channels, Science, 367, (2020)
[30]  
Briggeman M., Li J., Huang M., Lee H., Lee J.-W., Eom K., Eom C.-B., Irvin P., Levy J., Engineered spin-orbit interactions in (Equation presented)-based 1d serpentine electron waveguides, Sci. Adv, 6, (2020)