Learning Multi-Granular Spatio-Temporal Graph Network for Skeleton-based Action Recognition

被引:252
作者
Chen, Tailin [1 ,3 ,4 ]
Zhou, Desen [2 ]
Wang, Jian [2 ]
Wang, Shidong [1 ]
Guan, Yu [1 ]
He, Xuming [3 ]
Ding, Errui [2 ]
机构
[1] Newcastle Univ, Open Lab, Newcastle Upon Tyne, Tyne & Wear, England
[2] Baidu Inc, Dept Comp Vis Technol VIS, Beijing, Peoples R China
[3] ShanghaiTech Univ, Shanghai, Peoples R China
[4] Baidu VIS, Beijing, Peoples R China
来源
PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021 | 2021年
基金
英国工程与自然科学研究理事会;
关键词
Action Recognition; Skeleton-based; Multi-granular; Spatial temporal; attention; DualHead-Net;
D O I
10.1145/3474085.3475574
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The task of skeleton-based action recognition remains a core challenge in human-centred scene understanding due to the multiple granularities and large variation in human motion. Existing approaches typically employ a single neural representation for different motion patterns, which has difficulty in capturing fine-grained action classes given limited training data. To address the aforementioned problems, we propose a novel multi-granular spatiotemporal graph network for skeleton-based action classification that jointly models the coarse- and fine-grained skeleton motion patterns. To this end, we develop a dual-head graph network consisting of two interleaved branches, which enables us to extract features at two spatio-temporal resolutions in an effective and efficient manner. Moreover, our network utilises a cross-head communication strategy to mutually enhance the representations of both heads. We conducted extensive experiments on three large-scale datasets, namely NTU RGB+D 60, NTU RGB+D 120, and KineticsSkeleton, and achieves the state-of-the-art performance on all the benchmarks, which validates the effectiveness of our method1.
引用
收藏
页码:4334 / 4342
页数:9
相关论文
共 41 条
[1]  
[Anonymous], 2017, CVPRW
[2]  
[Anonymous], 2016, 2016 IEEE C COMPUTER, DOI DOI 10.1109/CVPR.2016.115
[3]  
[Anonymous], 2020, AAAI, DOI DOI 10.1109/ICCE-TAIWAN49838.2020.9258245
[4]  
[Anonymous], 2020, CVPR, DOI DOI 10.1109/CVPR42600.2020.00119
[5]  
[Anonymous], 2020, CVPR, DOI DOI 10.1109/CVPR42600.2020.00026
[6]   SkeleMotion: A New Representation of Skeleton Joint Sequences Based on Motion Information for 3D Action Recognition [J].
Caetano, Carlos ;
Sena, Jessica ;
Bremond, Francois ;
dos Santos, Jefersson A. ;
Schwartz, William Robson .
2019 16TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS), 2019,
[7]   Skeleton Image Representation for 3D Action Recognition based on Tree Structure and Reference Joints [J].
Caetano, Carlos ;
Bremond, Francois ;
Schwartz, William Robson .
2019 32ND SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI), 2019, :16-23
[8]  
Canto LF, 2013, SCATTERING THEORY OF MOLECULES, ATOMS AND NUCLEI, P3
[9]   OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields [J].
Cao, Zhe ;
Hidalgo, Gines ;
Simon, Tomas ;
Wei, Shih-En ;
Sheikh, Yaser .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (01) :172-186
[10]  
Chen ZH, 2021, AAAI CONF ARTIF INTE, V35, P1132