共 81 条
- [1] Adams J., The case of scirrhous of the prostate gland with corresponding affliction of the lymphatic glands in the lumbar region and in the pelvis, Lancet, 1, 1, (1853)
- [2] Akinnuwesi B.A., Adegbite B.A., Adelowo F., Et al., Decision support system for diagnosing rheumatic-musculoskeletal disease using fuzzy cognitive map technique, Inform. Med. Unlocked, 18, 1, pp. 1-19, (2020)
- [3] Aldoj N., Lukas S., Dewey M., Et al., Semi-automatic classification of prostate cancer on multi-parametric MR imaging using a multi-channel 3D convolutional neural network, Eur. Radiol., 30, 2, pp. 1243-1253, (2020)
- [4] Alexander D.D., Mink P.J., Cushing C.A., Et al., A review and meta-analysis of prospective studies of red and processed meat intake and prostate cancer, Nutr. J., 9, 1, pp. 9-50, (2010)
- [5] Alkadi R., Taher F., El-Baz A., Et al., A deep learning-based approach for the detection and localization of prostate cancer in T2 magnetic resonance images, J. Digit. Imag., 32, 5, pp. 793-807, (2019)
- [6] Alkhateeb A., Atikukke G., Rueda L., Machine learning methods for prostate cancer diagnosis. J, J. Cancer, 1, 3, pp. 70-75, (2020)
- [7] American Cancer Society, Inc, (2022)
- [8] Antonelli M., Johnston E.W., Dikaios N., Et al., Machine learning classifiers can predict Gleason pattern 4 prostate cancer with greater accuracy than experienced radiologists, Eur. Radiol., 29, 9, pp. 4754-4764, (2019)
- [9] Barentsz J.O., Richenberg J., Clements R., Et al., ESUR prostate MR guidelines 2012, Eur. Radiol., 22, 4, pp. 746-757, (2012)
- [10] Bernatz S., Ackermann J., Mandel P., Et al., Comparison of machine learning algorithms to predict clinically significant prostate cancer of the peripheral zone with multiparametric MRI using clinical assessment categories and radiomic features, Eur. Radiol., 30, 12, pp. 6757-6769, (2020)