Unveiling the Re, Cr, and I diffusion in saturated compacted bentonite using machine-learning methods

被引:7
作者
Feng, Zheng-Ye [1 ]
Tian, Jun-Lei [1 ]
Wu, Tao [1 ]
Wei, Guo-Jun [1 ,2 ]
Li, Zhi-Long [1 ,3 ]
Shi, Xiao-Qiong [1 ]
Wang, Yong-Jia [1 ]
Li, Qing-Feng [1 ]
机构
[1] Huzhou Univ, Dept Engn, Huzhou 313000, Peoples R China
[2] Shanxi Univ, Inst Theoret Phys, Taiyuan 030006, Peoples R China
[3] Shenyang Normal Univ, Coll Phys Sci & Technol, Shenyang 110034, Peoples R China
基金
中国国家自然科学基金;
关键词
Machine learning; Effective diffusion coefficient; Through-diffusion experiment; Multi-porosity model; Global analysis; IONIC-STRENGTH; DRY DENSITY; THROUGH-DIFFUSION; RE(VII) DIFFUSION; SODIUM-IONS; HTO; MONTMORILLONITE; CLAY; RADIONUCLIDES; COEFFICIENTS;
D O I
10.1007/s41365-024-01456-8
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The safety assessment of high-level radioactive waste repositories requires a high predictive accuracy for radionuclide diffusion and a comprehensive understanding of the diffusion mechanism. In this study, a through-diffusion method and six machine-learning methods were employed to investigate the diffusion of ReO4-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {ReO}_{4}<^>{-}}$$\end{document}, HCrO4-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {HCrO}_{4}<^>{-}}$$\end{document}, and I-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {I}<^>{-}}$$\end{document} in saturated compacted bentonite under different salinities and compacted dry densities. The machine-learning models were trained using two datasets. One dataset contained six input features and 293 instances obtained from the diffusion database system of the Japan Atomic Energy Agency (JAEA-DDB) and 15 publications. The other dataset, comprising 15,000 pseudo-instances, was produced using a multi-porosity model and contained eight input features. The results indicate that the former dataset yielded a higher predictive accuracy than the latter. Light gradient-boosting exhibited a higher prediction accuracy (R2=0.92\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R<^>2 = 0.92$$\end{document}) and lower error (MSE=0.01\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$MSE = 0.01$$\end{document}) than the other machine-learning algorithms. In addition, Shapley Additive Explanations, Feature Importance, and Partial Dependence Plot analysis results indicate that the rock capacity factor and compacted dry density had the two most significant effects on predicting the effective diffusion coefficient, thereby offering valuable insights.
引用
收藏
页数:13
相关论文
共 49 条
[1]   Combined tracer through-diffusion of HTO and 22Na through Na-montmorillonite with different bulk dry densities [J].
Bestel, Martina ;
Glaus, Martin A. ;
Frick, Sabrina ;
Gimmi, Thomas ;
Juranyi, Fanni ;
Van Loon, Luc R. ;
Diamond, Larryn W. .
APPLIED GEOCHEMISTRY, 2018, 93 :158-166
[2]   China's progress in radionuclide migration study over the past decade (2010-2021): Sorption, transport and radioactive colloid [J].
Chen, Zongyuan ;
Wang, Siyuan ;
Hou, Huijuan ;
Chen, Kang ;
Gao, Pengyuan ;
Zhang, Zhen ;
Jin, Qiang ;
Pan, Duoqiang ;
Guo, Zhijun ;
Wu, Wangsuo .
CHINESE CHEMICAL LETTERS, 2022, 33 (07) :3405-3412
[3]   Investigation on gas migration behaviours in saturated compacted bentonite under rigid boundary conditions [J].
Cui, Lin-Yong ;
Masum, Shakil A. ;
Ye, Wei-Min ;
Thomas, Hywel R. .
ACTA GEOTECHNICA, 2022, 17 (06) :2517-2531
[4]   Perturbation induced by EDTA on HDO, Br- and EuIII diffusion in a large-scale clay rock sample [J].
Dagnelie, R. V. H. ;
Arnoux, P. ;
Radwan, J. ;
Lebeau, D. ;
Nerfie, P. ;
Beaucaire, C. .
APPLIED CLAY SCIENCE, 2015, 105 :142-149
[5]   Application of machine learning to study the effective diffusion coefficient of Re(VII) in compacted bentonite [J].
Feng, Zhengye ;
Gao, Zepeng ;
Wang, Yongjia ;
Wu, Tao ;
Li, Qingfeng .
APPLIED CLAY SCIENCE, 2023, 243
[6]   Diffusion of tritiated water, 137Cs+, and 125I- in compacted Ca-montmorillonite: Experimental and modeling approaches [J].
Fukatsu, Yuta ;
Yotsuji, Kenji ;
Ohkubo, Takahiro ;
Tachi, Yukio .
APPLIED CLAY SCIENCE, 2021, 211
[7]   Machine learning the nuclear mass [J].
Gao, Ze-Peng ;
Wang, Yong-Jia ;
Lu, Hong-Liang ;
Li, Qing-Feng ;
Shen, Cai-Wan ;
Liu, Ling .
NUCLEAR SCIENCE AND TECHNIQUES, 2021, 32 (10)
[8]   Diffusion coefficients and accessible porosity for HTO and 36Cl in compacted FEBEX bentonite [J].
García-Gutiérrez, M ;
Cormenzana, JL ;
Missana, T ;
Mingarro, M .
APPLIED CLAY SCIENCE, 2004, 26 (1-4) :65-73
[9]   Porosity investigation of compacted bentonite using through-diffusion method and multi-porosity model [J].
Geng, Zilong ;
Feng, Zhengye ;
Li, Hongqiu ;
Wang, Yongya ;
Wu, Tao .
APPLIED GEOCHEMISTRY, 2022, 146
[10]  
Hodhod OA., 2013, HBRC Journal, V9, P15, DOI [DOI 10.1016/J.HBRCJ.2013.04.001, 10.1016/j.hbrcj.2013.04.001]