Unveiling the Re, Cr, and I diffusion in saturated compacted bentonite using machine-learning methods

被引:6
|
作者
Feng, Zheng-Ye [1 ]
Tian, Jun-Lei [1 ]
Wu, Tao [1 ]
Wei, Guo-Jun [1 ,2 ]
Li, Zhi-Long [1 ,3 ]
Shi, Xiao-Qiong [1 ]
Wang, Yong-Jia [1 ]
Li, Qing-Feng [1 ]
机构
[1] Huzhou Univ, Dept Engn, Huzhou 313000, Peoples R China
[2] Shanxi Univ, Inst Theoret Phys, Taiyuan 030006, Peoples R China
[3] Shenyang Normal Univ, Coll Phys Sci & Technol, Shenyang 110034, Peoples R China
基金
中国国家自然科学基金;
关键词
Machine learning; Effective diffusion coefficient; Through-diffusion experiment; Multi-porosity model; Global analysis; IONIC-STRENGTH; DRY DENSITY; THROUGH-DIFFUSION; RE(VII) DIFFUSION; SODIUM-IONS; HTO; MONTMORILLONITE; CLAY; RADIONUCLIDES; COEFFICIENTS;
D O I
10.1007/s41365-024-01456-8
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The safety assessment of high-level radioactive waste repositories requires a high predictive accuracy for radionuclide diffusion and a comprehensive understanding of the diffusion mechanism. In this study, a through-diffusion method and six machine-learning methods were employed to investigate the diffusion of ReO4-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {ReO}_{4}<^>{-}}$$\end{document}, HCrO4-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {HCrO}_{4}<^>{-}}$$\end{document}, and I-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {I}<^>{-}}$$\end{document} in saturated compacted bentonite under different salinities and compacted dry densities. The machine-learning models were trained using two datasets. One dataset contained six input features and 293 instances obtained from the diffusion database system of the Japan Atomic Energy Agency (JAEA-DDB) and 15 publications. The other dataset, comprising 15,000 pseudo-instances, was produced using a multi-porosity model and contained eight input features. The results indicate that the former dataset yielded a higher predictive accuracy than the latter. Light gradient-boosting exhibited a higher prediction accuracy (R2=0.92\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R<^>2 = 0.92$$\end{document}) and lower error (MSE=0.01\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$MSE = 0.01$$\end{document}) than the other machine-learning algorithms. In addition, Shapley Additive Explanations, Feature Importance, and Partial Dependence Plot analysis results indicate that the rock capacity factor and compacted dry density had the two most significant effects on predicting the effective diffusion coefficient, thereby offering valuable insights.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Application of machine learning in predicting the apparent diffusion coefficient of Se(IV) in compacted bentonite
    Shi, Xiaoqiong
    Tian, Junlei
    Shen, Jiacong
    Feng, Zhengye
    Feng, Jiaxing
    Wu, Tao
    Li, Qingfeng
    JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2024, 333 (11) : 5811 - 5821
  • [2] Application of machine learning to study the effective diffusion coefficient of Re(VII) in compacted bentonite
    Feng, Zhengye
    Gao, Zepeng
    Wang, Yongjia
    Wu, Tao
    Li, Qingfeng
    APPLIED CLAY SCIENCE, 2023, 243
  • [3] Predicting anion diffusion in bentonite using hybrid machine learning model and correlation of physical quantities
    Wu, Tao
    Tian, Junlei
    Shi, Xiaoqiong
    Li, Zhilong
    Feng, Jiaxing
    Feng, Zhengye
    Li, Qingfeng
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 946
  • [4] Diffusion of Re(VII), Se(IV) and Cr(VI) in compacted GMZ bentonite
    Wu, Tao
    Geng, Zilong
    Feng, Zhengye
    Pan, Guoxiang
    Shen, Qiang
    JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2022, 331 (05) : 2311 - 2317
  • [5] MEMS Accelerometers Classification Using Machine-Learning Methods
    Nevlydov, Igor
    Ponomaryova, Ganna
    Miliutina, Svitlana
    Bortnikova, Viktoriia
    2017 XIIITH INTERNATIONAL CONFERENCE ON PERSPECTIVE TECHNOLOGIES AND METHODS IN MEMS DESIGN (MEMSTECH), 2017, : 51 - 55
  • [6] Intercomparison of determining diffusion coefficients of I- in compacted bentonite using various mathematical models of through-diffusion experiments in the laboratory
    Tsai, Tsuey-Lin
    Tsai, Shih-Chin
    Chang, Der-Ming
    Cheng, Wen-Hsi
    JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2021, 330 (03) : 1317 - 1327
  • [7] Modeling the Vibrational Relaxation Rate Using Machine-Learning Methods
    Bushmakova, M. A.
    Kustova, E. V.
    VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2022, 55 (01) : 87 - 95
  • [8] Severity Classification of Code Smells Using Machine-Learning Methods
    Dewangan S.
    Rao R.S.
    Chowdhuri S.R.
    Gupta M.
    SN Computer Science, 4 (5)
  • [9] Modeling the Vibrational Relaxation Rate Using Machine-Learning Methods
    M. A. Bushmakova
    E. V. Kustova
    Vestnik St. Petersburg University, Mathematics, 2022, 55 : 87 - 95
  • [10] Classifying "kinase inhibitor-likeness" by using machine-learning methods
    Briem, H
    Günther, J
    CHEMBIOCHEM, 2005, 6 (03) : 558 - 566