Wegner estimate and upper bound on the eigenvalue condition number of non-Hermitian random matrices

被引:3
作者
Erdos, Laszlo [1 ]
Ji, Hong Chang [1 ]
机构
[1] IST Austria, Campus 1, Klosterneuburg, Austria
基金
欧洲研究理事会;
关键词
DENSITY-OF-STATES; SPECTRAL DISTRIBUTION; UNIVERSALITY; REAL; STATISTICS; ENSEMBLES;
D O I
10.1002/cpa.22201
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider NxN$N\times N$ non-Hermitian random matrices of the form X+A$X+A$, where A$A$ is a general deterministic matrix and NX$\sqrt {N}X$ consists of independent entries with zero mean, unit variance, and bounded densities. For this ensemble, we prove (i) a Wegner estimate, that is, that the local density of eigenvalues is bounded by N1+o(1)$N<^>{1+o(1)}$ and (ii) that the expected condition number of any bulk eigenvalue is bounded by N1+o(1)$N<^>{1+o(1)}$; both results are optimal up to the factor No(1)$N<^>{o(1)}$. The latter result complements the very recent matching lower bound obtained by Cipolloni et al. and improves the N$N$-dependence of the upper bounds by Banks et al. and Jain et al. Our main ingredient, a near-optimal lower tail estimate for the small singular values of X+A-z$X+A-z$, is of independent interest.
引用
收藏
页码:3785 / 3840
页数:56
相关论文
共 53 条
[1]   Matrix regularizing effects of Gaussian perturbations [J].
Aizenman, Michael ;
Peled, Ron ;
Schenker, Jeffrey ;
Shamis, Mira ;
Sodin, Sasha .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2017, 19 (03)
[2]   The elliptic Ginibre ensemble: A unifying approach to local and global statistics for higher dimensions [J].
Akemann, G. ;
Duits, M. ;
Molag, L. D. .
JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (02)
[3]   Inhomogeneous circular law for correlated matrices [J].
Alt, Johannes ;
Kruger, Torben .
JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 281 (07)
[4]   LOCAL INHOMOGENEOUS CIRCULAR LAW [J].
Alt, Johannes ;
Erdos, Laszlo ;
Krueger, Torben .
ANNALS OF APPLIED PROBABILITY, 2018, 28 (01) :148-203
[5]  
Bai ZD, 1997, ANN PROBAB, V25, P494
[6]  
Banks J., 2020, ARXIV
[7]   Gaussian Regularization of the Pseudospectrum and Davies' Conjecture [J].
Banks, Jess ;
Kulkarni, Archit ;
Mukherjee, Satyaki ;
Srivastava, Nikhil .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2021, 74 (10) :2114-+
[8]   Pseudospectral Shattering, the Sign Function, and Diagonalization in Nearly Matrix Multiplication Time [J].
Banks, Jess ;
Garza-Vargas, Jorge ;
Kulkarni, Archit ;
Srivastava, Nikhil .
2020 IEEE 61ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2020), 2020, :529-540
[9]   Spectral Measure of Heavy Tailed Band and Covariance Random Matrices [J].
Belinschi, Serban ;
Dembo, Amir ;
Guionnet, Alice .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 289 (03) :1023-1055
[10]   Universality of local eigenvalue statistics for some sample covariance matrices [J].
Ben Arous, G ;
Péché, S .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (10) :1316-1357