PYSKL: Towards Good Practices for Skeleton Action Recognition

被引:81
作者
Duan, Haodong [1 ,2 ]
Wang, Jiaqi [2 ]
Chen, Kai [2 ]
Lin, Dahua [1 ,2 ]
机构
[1] Chinese Univ Hong Kong, Hong Kong, Peoples R China
[2] Shanghai AI Lab, Shanghai, Peoples R China
来源
PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022 | 2022年
关键词
open source; video understanding; action recognition; skeleton action recognition;
D O I
10.1145/3503161.3548546
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present PYSKL: an open-source toolbox for skeleton-based action recognition based on PyTorch. The toolbox supports a wide variety of skeleton action recognition algorithms, including approaches based on GCN and CNN. In contrast to existing opensource skeleton action recognition projects that include only one or two algorithms, PYSKL implements six different algorithms under a unified framework with both the latest and original good practices to ease the comparison of efficacy and efficiency. We also provide an original GCN-based skeleton action recognition model named ST-GCN++, which achieves competitive recognition performance without any complicated attention schemes, serving as a strong baseline. Meanwhile, PYSKL supports the training and testing of nine skeleton-based action recognition benchmarks and achieves state-of-the-art recognition performance on eight of them. To facilitate future research on skeleton action recognition, we also provide a large number of trained models and detailed benchmark results to give some insights. PYSKL is released at https://github.com/kennymckormick/pyskl and is actively maintained.(1)
引用
收藏
页码:7351 / 7354
页数:4
相关论文
共 25 条
[1]  
[Anonymous], 2016, 2016 IEEE C COMPUTER, DOI [10.1109/CVPR.2016.115, DOI 10.1109/CVPR.2016.115]
[2]   OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields [J].
Cao, Zhe ;
Hidalgo, Gines ;
Simon, Tomas ;
Wei, Shih-En ;
Sheikh, Yaser .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (01) :172-186
[3]   Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset [J].
Carreira, Joao ;
Zisserman, Andrew .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :4724-4733
[4]   Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition [J].
Chen, Yuxin ;
Zhang, Ziqi ;
Yuan, Chunfeng ;
Li, Bing ;
Deng, Ying ;
Hu, Weiming .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :13339-13348
[5]   Skeleton-Based Action Recognition with Shift Graph Convolutional Network [J].
Cheng, Ke ;
Zhang, Yifan ;
He, Xiangyu ;
Chen, Weihan ;
Cheng, Jian ;
Lu, Hanqing .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :180-189
[6]   PoTion: Pose MoTion Representation for Action Recognition [J].
Choutas, Vasileios ;
Weinzaepfel, Philippe ;
Revaud, Jerome ;
Schmid, Cordelia .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :7024-7033
[7]   Learning Spatiotemporal Features with 3D Convolutional Networks [J].
Du Tran ;
Bourdev, Lubomir ;
Fergus, Rob ;
Torresani, Lorenzo ;
Paluri, Manohar .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :4489-4497
[8]   X3D: Expanding Architectures for Efficient Video Recognition [J].
Feichtenhofer, Christoph .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :200-210
[9]   SlowFast Networks for Video Recognition [J].
Feichtenhofer, Christoph ;
Fan, Haoqi ;
Malik, Jitendra ;
He, Kaiming .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :6201-6210
[10]  
Kuehne H, 2011, IEEE I CONF COMP VIS, P2556, DOI 10.1109/ICCV.2011.6126543