Neural Network Approaches for Mobile Spectroscopic Gamma-Ray Source Detection

被引:11
作者
Bilton, Kyle J. [1 ]
Joshi, Tenzing H. Y. [2 ]
Bandstra, Mark S. [2 ]
Curtis, Joseph C. [2 ]
Hellfeld, Daniel [2 ]
Vetter, Kai [1 ,2 ]
机构
[1] Univ Calif Berkeley, Nucl Engn Dept, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Appl Nucl Phys Program, Berkeley, CA 94720 USA
来源
JOURNAL OF NUCLEAR ENGINEERING | 2021年 / 2卷 / 02期
关键词
gamma-ray source identification; gamma-ray spectroscopy; neural networks; machine learning; classification; SPECTRA; IDENTIFICATION; ALGORITHMS;
D O I
10.3390/jne2020018
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Artificial neural networks (ANNs) for performing spectroscopic gamma-ray source identification have been previously introduced, primarily for applications in controlled laboratory settings. To understand the utility of these methods in scenarios and environments more relevant to nuclear safety and security, this work examines the use of ANNs for mobile detection, which involves highly variable gamma-ray background, low signal-to-noise ratio measurements, and low false alarm rates. Simulated data from a 2" x 4" x 16" NaI(Tl) detector are used in this work for demonstrating these concepts, and the minimum detectable activity (MDA) is used as a performance metric in assessing model performance.In addition to examining simultaneous detection and identification, binary spectral anomaly detection using autoencoders is introduced in this work, and benchmarked using detection methods based on Non-negative Matrix Factorization (NMF) and Principal Component Analysis (PCA). On average, the autoencoder provides a 12% and 23% improvement over NMF- and PCA-based detection methods, respectively. Additionally, source identification using ANNs is extended to leverage temporal dynamics by means of recurrent neural networks, and these time-dependent models outperform their time-independent counterparts by 17% for the analysis examined here. The paper concludes with a discussion on tradeoffs between the ANN-based approaches and the benchmark methods examined here.
引用
收藏
页码:190 / 206
页数:17
相关论文
共 35 条
[1]  
Adebayo J, 2018, ADV NEUR IN, V31
[2]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[3]   Modeling Aerial Gamma-Ray Backgrounds Using Non-negative Matrix Factorization [J].
Bandstra, M. S. ;
Joshi, T. H. Y. ;
Bilton, K. J. ;
Zoglauer, A. ;
Quiter, B. J. .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2020, 67 (05) :777-790
[4]  
Bergstra J, 2012, J MACH LEARN RES, V13, P281
[5]   Non-negative Matrix Factorization of Gamma-Ray Spectra for Background Modeling, Detection, and Source Identification [J].
Bilton, K. J. ;
Joshi, T. H. ;
Bandstra, M. S. ;
Curtis, J. C. ;
Quiter, B. J. ;
Cooper, R. J. ;
Vetter, K. .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2019, 66 (05) :827-837
[6]   A Directional Detector Response Function for Anisotropic Detectors [J].
Celik, Cihangir ;
Peplow, Douglas E. ;
Davidson, Gregory G. ;
Swinney, Mathew W. .
NUCLEAR SCIENCE AND ENGINEERING, 2019, 193 (12) :1355-1370
[7]   Nuclide identification algorithm based on K-L transform and neural networks [J].
Chen, Liang ;
Wei, Yi-Xiang .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2009, 598 (02) :450-453
[8]  
Cho KYHY, 2014, Arxiv, DOI arXiv:1406.1078
[9]   Utilization of advanced clutter suppression algorithms for improved standoff detection and identification of radionuclide threats [J].
Cosofret, Bogdan R. ;
Shokhirev, Kirill ;
Mulhall, Phil ;
Payne, David ;
Harris, Bernard .
CHEMICAL, BIOLOGICAL, RADIOLOGICAL, NUCLEAR, AND EXPLOSIVES (CBRNE) SENSING XV, 2014, 9073
[10]   Automatic and Real-Time Identification of Radionuclides in Gamma-Ray Spectra: A New Method Based on Convolutional Neural Network Trained With Synthetic Data Set [J].
Daniel, G. ;
Ceraudo, F. ;
Limousin, O. ;
Maier, D. ;
Meuris, A. .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2020, 67 (04) :644-653