Simulating chi-square data through algorithms in the presence of uncertainty

被引:0
作者
Aslam, Muhammad [1 ]
Arif, Osama H. [1 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Stat, Jeddah 21551, Saudi Arabia
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 05期
关键词
chi-square distribution; random numbers; simulation; classical statistics; neutrosophic statistics;
D O I
10.3934/math.2024588
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a novel methodology aimed at generating chi-square variates within the framework of neutrosophic statistics. It introduces algorithms designed for the generation of neutrosophic random chi-square variates and illustrates the distribution of these variates across a spectrum of indeterminacy levels. The investigation delves into the influence of indeterminacy on random numbers, revealing a significant impact across various degrees of freedom. Notably, the analysis of random variate tables demonstrates a consistent decrease in neutrosophic random variates as the degree of indeterminacy escalates across all degrees of freedom values. These findings underscore the pronounced effect of uncertainty on chi-square data generation. The proposed algorithm offers a valuable tool for generating data under conditions of uncertainty, particularly in scenarios where capturing real data proves challenging. Furthermore, the data generated through this approach holds utility in goodness -of -fit tests and assessments of variance homogeneity.
引用
收藏
页码:12043 / 12056
页数:14
相关论文
共 33 条
[1]  
Alhabib R, 2018, NEUTROSOPHIC SETS SY, V22, P30
[2]   Gamma Pseudo Random Number Generators [J].
Almaraz Luengo, Elena .
ACM COMPUTING SURVEYS, 2023, 55 (04) :1-33
[3]   Uncertainty-driven generation of neutrosophic random variates from the Weibull distribution [J].
Aslam, Muhammad .
JOURNAL OF BIG DATA, 2023, 10 (01)
[4]   Algorithm for generating neutrosophic data using accept-reject method [J].
Aslam, Muhammad ;
Alamri, Faten S. .
JOURNAL OF BIG DATA, 2023, 10 (01)
[5]   Simulating imprecise data: sine-cosine and convolution methods with neutrosophic normal distribution [J].
Aslam, Muhammad .
JOURNAL OF BIG DATA, 2023, 10 (01)
[6]   Truncated variable algorithm using DUS-neutrosophic Weibull distribution [J].
Aslam, Muhammad .
COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (03) :3107-3114
[7]   UNCERTAINTY INTERVAL EVALUATION USING THE CHI-SQUARE AND FISHER DISTRIBUTIONS IN THE MEASUREMENT PROCESS [J].
Catelani, Marcantonio ;
Zanobini, Andrea ;
Ciani, Lorenzo .
METROLOGY AND MEASUREMENT SYSTEMS, 2010, 17 (02) :195-204
[8]   Scale Effect and Anisotropy Analyzed for Neutrosophic Numbers of Rock Joint Roughness Coefficient Based on Neutrosophic Statistics [J].
Chen, Jiqian ;
Ye, Jun ;
Du, Shigui .
SYMMETRY-BASEL, 2017, 9 (10)
[9]   Expressions of Rock Joint Roughness Coefficient Using Neutrosophic Interval Statistical Numbers [J].
Chen, Jiqian ;
Ye, Jun ;
Du, Shigui ;
Yong, Rui .
SYMMETRY-BASEL, 2017, 9 (07)
[10]  
Cormen Thomas H, 2022, Introduction to Algorithms