Excellent energy storage performance in Bi0.5Na0.5TiO3-based lead-free high-entropy relaxor ferroelectrics via B-site modification

被引:22
作者
Yang, Kaihua [1 ]
Luo, Gengguang [1 ]
Ma, Li [1 ]
Che, Ruoxuan [1 ]
Che, Zhiyi [1 ]
Feng, Qin [1 ]
Cen, Zhenyong [1 ]
Chen, Xiyong [1 ]
Zhou, Jiajun [2 ]
Luo, Nengneng [1 ]
机构
[1] Guangxi Univ, Sch Resources Environm & Mat, State Key Lab Featured Met Mat & Life cycle Safety, Nanning 530004, Peoples R China
[2] Huazhong Univ Sci & Technol, Key Lab Funct Mat Elect Informat B, Sch Opt & Elect Informat, Minist Educ, Wuhan 430074, Peoples R China
来源
JOURNAL OF ADVANCED CERAMICS | 2024年 / 13卷 / 03期
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
(Bi (0.5) Na (0.5) )TiO (3); high-entropy perovskite ceramics; relaxor ferroelectrics (RFEs); polarization saturation; energy storage density; PHASE-STABILITY; DENSITY; CERAMICS; TEMPERATURE; SPECTROSCOPY; CAPACITORS; EFFICIENCY; BEHAVIOR; RANGE;
D O I
10.26599/JAC.2024.9220859
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Next-generation advanced high/pulsed power capacitors urgently require dielectric materials with outstanding energy storage performance. Bi0.5Na0.5TiO3-based lead-free materials exhibit high polarization, but the high remanent polarization and large polarization hysteresis limit their applications in dielectric capacitors. Herein, high-entropy perovskite relaxor ferroelectrics (Na0.2Bi0.2Ba0.2Sr0.2Ca0.2)(Ti1-x%Zrx%)O3 are designed by adding multiple ions in the A-site and replacing the B-site Ti4+ with a certain amount of Zr4+. The newly designed system showed high relaxor feature and slim polarization-electric (P-E) loops. Especially, improved relaxor feature and obviously delayed polarization saturation were found with the increasing of Zr4+. Of particular importance is that both high recoverable energy storage density of 6.6 J/cm3 and energy efficiency of 93.5% were achieved under 550 kV/cm for the ceramics of x = 6, accompanying with excellent frequency stability, appreciable thermal stability, and prosperous discharge property. This work not only provides potential dielectric materials for energy storage applications, but also offers an effective strategy to obtain dielectric ceramics with ultrahigh comprehensive energy storage performance to meet the demanding requirements of advanced energy storage applications.
引用
收藏
页码:345 / 353
页数:9
相关论文
共 48 条
[1]   Thermally-stable high energy-storage performance over a wide temperature range in relaxor-ferroelectric Bi1/2Na1/2TiO3-based ceramics [J].
Akram, Fazli ;
Sheeraz, Muhammad ;
Hussain, Ali ;
Kim, Ill Won ;
Kim, Tae Heon ;
Ahn, Chang Won .
CERAMICS INTERNATIONAL, 2021, 47 (16) :23488-23496
[2]   Phase stability and distortion in high-entropy oxides [J].
Anand, G. ;
Wynn, Alex P. ;
Handley, Christopher M. ;
Freeman, Colin L. .
ACTA MATERIALIA, 2018, 146 :119-125
[3]   Ultrahigh energy storage density and charge-discharge performance in novel sodium bismuth titanate-based ceramics [J].
Bian, Shuaishuai ;
Yue, Zhenxing ;
Shi, Yunzhou ;
Zhang, Jie ;
Feng, Wei .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2021, 104 (02) :936-947
[4]   Phase structure and defect engineering in (Bi0.5Na0.5)TiO3-based relaxor antiferroelectrics toward excellent energy storage performance [J].
Che, Zhiyi ;
Ma, Li ;
Luo, Gengguang ;
Xu, Chao ;
Cen, Zhenyong ;
Feng, Qin ;
Chen, Xiyong ;
Ren, Kailiang ;
Luo, Nengneng .
NANO ENERGY, 2022, 100
[5]   Giant energy-storage density with ultrahigh efficiency in lead-free relaxors via high-entropy design [J].
Chen, Liang ;
Deng, Shiqing ;
Liu, Hui ;
Wu, Jie ;
Qi, He ;
Chen, Jun .
NATURE COMMUNICATIONS, 2022, 13 (01)
[6]   High-Energy Storage Properties over a Broad Temperature Range in La-Modified BNT-Based Lead-Free Ceramics [J].
Chu, Bingkai ;
Hao, Jigong ;
Li, Peng ;
Li, Yuchao ;
Li, Wei ;
Zheng, Limei ;
Zeng, Huarong .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (17) :19683-19696
[7]   Realizing enhanced energy storage and hardness performances in 0.90NaNbO3-0.10Bi(Zn0.5Sn0.5)O3 ceramics [J].
Dong, Xiaoyan ;
Li, Xu ;
Chen, Hongyun ;
Dong, Qinpeng ;
Wang, Jiaming ;
Wang, Xiang ;
Pan, Yue ;
Chen, Xiuli ;
Zhou, Huanfu .
JOURNAL OF ADVANCED CERAMICS, 2022, 11 (05) :729-741
[8]   Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase [J].
Guo, Sheng ;
Liu, C. T. .
PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2011, 21 (06) :433-446
[9]   Achieve ultrahigh energy storage performance in BaTiO3-Bi(Mg1/2Ti1/2)O3 relaxor ferroelectric ceramics via nano-scale polarization mismatch and reconstruction [J].
Hu, Qingyuan ;
Tian, Ye ;
Zhu, Qingshan ;
Bian, Jihong ;
Jin, Li ;
Du, Hongliang ;
Alikin, D. O. ;
Shur, V. Ya ;
Feng, Yujun ;
Xu, Zhuo ;
Wei, Xiaoyong .
NANO ENERGY, 2020, 67
[10]   Ultrahigh energy density in short-range tilted NBT-based lead-free multilayer ceramic capacitors by nanodomain percolation [J].
Ji, Hongfen ;
Wang, Dawei ;
Bao, Weichao ;
Lu, Zhilun ;
Wang, Ge ;
Yang, Huijing ;
Mostaed, Ali ;
Li, Linhao ;
Feteira, Antonio ;
Sun, Shikuan ;
Xu, Fangfang ;
Li, Dejun ;
Ma, Chao-Jie ;
Liu, Shi-Yu ;
Reaney, Ian M. .
ENERGY STORAGE MATERIALS, 2021, 38 :113-120