On Multi-step Extended Maximum Residual Kaczmarz Method for Solving Large Inconsistent Linear Systems

被引:1
作者
Xiao, A. -Qin [1 ]
Yin, Jun-Feng [1 ]
Zheng, Ning [1 ]
机构
[1] Tongji Univ, Sch Math Sci, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
Inconsistent systems; extended Kaczmarz method; multi-step iteration; maximum residual; convergence;
D O I
10.1007/s00025-024-02210-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A multi-step extended maximum residual Kaczmarz method is presented for the solution of the large inconsistent linear system of equations by using the multi-step iterations technique. Theoretical analysis proves the proposed method is convergent and gives an upper bound on its convergence rate. Numerical experiments show that the proposed method is effective and outperforms the existing extended Kaczmarz methods in terms of the number of iteration steps and the computational costs.
引用
收藏
页数:17
相关论文
共 22 条
  • [1] [Anonymous], 1937, Bull. Int. Acad. Plonaise Sci. Lett. Classe Sci. Math. Nat. S r. A Sci. Math
  • [2] On multi-step randomized extended Kaczmarz method for solving large sparse inconsistent linear systems
    Bai, Zhong-Zhi
    Wang, Lu
    [J]. APPLIED NUMERICAL MATHEMATICS, 2023, 192 : 197 - 213
  • [3] On partially randomized extended Kaczmarz method for solving large sparse overdetermined inconsistent linear systems
    Bai, Zhong-Zhi
    Wu, Wen-Ting
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 578 : 225 - 250
  • [4] ON GREEDY RANDOMIZED KACZMARZ METHOD FOR SOLVING LARGE SPARSE LINEAR SYSTEMS
    Bai, Zhong-Zhi
    Wu, Wen-Ting
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (01) : A592 - A606
  • [5] A unified treatment of some iterative algorithms in signal processing and image reconstruction
    Byrne, C
    [J]. INVERSE PROBLEMS, 2004, 20 (01) : 103 - 120
  • [6] Tight upper bounds for the convergence of the randomized extended Kaczmarz and Gauss-Seidel algorithms
    Du, Kui
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2019, 26 (03)
  • [7] Filipovic D., 2019, Swiss Finance Institute Research Paper
  • [8] A Note On Convergence Rate of Randomized Kaczmarz Method
    Guan, Ying-Jun
    Li, Wei-Guo
    Xing, Li-Li
    Qiao, Tian-Tian
    [J]. CALCOLO, 2020, 57 (03)
  • [9] Greed Works: An Improved Analysis of Sampling Kaczmarz-Motzkin\ast
    Haddock, Jamie
    Ma, Anna
    [J]. SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2021, 3 (01): : 342 - 368
  • [10] AIR Tools II: algebraic iterative reconstruction methods, improved implementation
    Hansen, Per Christian
    Jorgensen, Jakob Sauer
    [J]. NUMERICAL ALGORITHMS, 2018, 79 (01) : 107 - 137