Modified inertial subgradient extragradient algorithms for generalized equilibria systems with constraints of variational inequalities and fixed points

被引:4
作者
Ceng, Lu-Chuan [1 ]
Chen, Shih-Hsin [2 ]
Liou, Yeong-Cheng [3 ,4 ,5 ,6 ]
Yin, Tzu-Chien [7 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[2] Tamkang Univ, Dept Comp Sci & Informat Engn, Taipei, Taiwan
[3] Kaohsiung Med Univ, Dept Healthcare Adm & Med Informat, Kaohsiung 807, Taiwan
[4] Kaohsiung Med Univ, Res Ctr Nonlinear Anal & Optimizat, Kaohsiung 807, Taiwan
[5] Kaohsiung Med Univ Hosp, Project Management Off Intelligence Healthcare, Kaohsiung 807, Taiwan
[6] Kaohsiung Med Univ Hosp, Dept Med Res, Kaohsiung 807, Taiwan
[7] China Med Univ, China Med Univ Hosp, Res Ctr Interneural Comp, Taichung 40402, Taiwan
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 06期
关键词
system of generalized equilibrium problems; modified inertial subgradient extragradient algorithm; common fixed point; variational inequality; STRONG-CONVERGENCE; THEOREMS;
D O I
10.3934/math.2024672
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this research, we studied modified inertial composite subgradient extragradient implicit rules for finding solutions of a system of generalized equilibrium problems with a common fixed-point problem and pseudomonotone variational inequality constraints. The suggested methods consisted of an inertial iterative algorithm, a hybrid deepest -descent technique, and a subgradient extragradient method. We proved that the constructed algorithms converge to a solution of the considered problem, which also solved some hierarchical variational inequality.
引用
收藏
页码:13819 / 13842
页数:24
相关论文
共 35 条
[1]  
Blum E., 1994, MATH STUDENT, V63, P123
[2]   Strong convergence results for variational inequalities and fixed point problems using modified viscosity implicit rules [J].
Cai, Gang ;
Shehu, Yekini ;
Iyiola, Olaniyi Samuel .
NUMERICAL ALGORITHMS, 2018, 77 (02) :535-558
[3]   Two inertial subgradient extragradient algorithms for variational inequalities with fixed-point constraints [J].
Ceng, L. C. ;
Petrusel, A. ;
Qin, X. ;
Yao, J. C. .
OPTIMIZATION, 2021, 70 (5-6) :1337-1358
[4]   Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities [J].
Ceng, Lu-Chuan ;
Wang, Chang-yu ;
Yao, Jen-Chih .
MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2008, 67 (03) :375-390
[5]   Hybrid inertial subgradient extragradient methods for variational inequalities and fixed point problems involving asymptotically nonexpansive mappings [J].
Ceng, Lu-Chuan ;
Shang, Meijuan .
OPTIMIZATION, 2021, 70 (04) :715-740
[6]   A relaxed extragradient-like method for a generalized mixed equilibrium problem, a general system of generalized equilibria and a fixed point problem [J].
Ceng, Lu-Chuan ;
Yao, Jen-Chih .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (3-4) :1922-1937
[7]   Extragradient method and golden ratio method for equilibrium problems on Hadamard manifolds [J].
Chen, Junfeng ;
Liu, Sanyang ;
Chang, Xiaokai .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2021, 98 (08) :1699-1712
[8]  
Combettes PL, 2005, J NONLINEAR CONVEX A, V6, P117
[9]   PSEUDOMONOTONE COMPLEMENTARITY-PROBLEMS IN HILBERT-SPACE [J].
COTTLE, RW ;
YAO, JC .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1992, 75 (02) :281-295
[10]   Projection extragradient algorithms for solving nonmonotone and non-Lipschitzian equilibrium problems in Hilbert spaces [J].
Deng, Lanmei ;
Hu, Rong ;
Fang, Yaping .
NUMERICAL ALGORITHMS, 2021, 86 (01) :191-221