The asymptotic stability of diverging traveling waves for reaction-advection-diffusion equations in cylinders

被引:0
作者
Jia, Fu-Jie [1 ]
Wang, Zhi-Cheng [2 ]
Guo, Gai-Hui [1 ]
机构
[1] Shaanxi Univ Sci & Technol, Sch Math & Data Sci, Xian 710021, Shaanxi, Peoples R China
[2] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2024年 / 75卷 / 05期
基金
中国国家自然科学基金;
关键词
Reaction-advection-diffusion equation; Cylinders; Liouville-type results; Diverging traveling waves; Asymptotic stability; FRONT PROPAGATION; SPEEDS; CONVERGENCE; DECAY;
D O I
10.1007/s00033-024-02298-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the asymptotic stability of diverging traveling waves for reaction-advection-diffusion equation ut-Delta u+alpha(t,y)ux=f(t,y,u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{t}-\Delta u+\alpha (t,y)u_{x}=f(t,y,u)$$\end{document} in cylinders. By the sliding method, we first establish a Liouville-type result. Then, using the Liouville-type result and truncation technique, we prove the asymptotic stability of the diverging traveling wave.
引用
收藏
页数:13
相关论文
共 40 条
[1]   Travelling waves for a non-monotone bistable equation with delay: existence and oscillations [J].
Alfaro, Matthieu ;
Ducrot, Arnaud ;
Giletti, Thomas .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2018, 116 :729-759
[2]  
Aronson D.G., 1975, PARTIAL DIFFERENTIAL, V446, P5, DOI DOI 10.1007/BFB0070595
[3]   Spectral analysis and multidimensional stability of traveling waves for nonlocal Allen-Cahn equation [J].
Bates, PW ;
Chen, FX .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 273 (01) :45-57
[4]   TRAVELING WAVE SOLUTIONS TO COMBUSTION MODELS AND THEIR SINGULAR LIMITS [J].
BERESTYCKI, H ;
NICOLAENKO, B ;
SCHEURER, B .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1985, 16 (06) :1207-1242
[5]   TRAVELING FRONTS IN CYLINDERS [J].
BERESTYCKI, H ;
NIRENBERG, L .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1992, 9 (05) :497-572
[6]  
Berestycki H, 2002, NATO ADV SCI I C-MAT, V569, P11
[7]  
Berestycki H., 1990, Some qualitative properties of solutions of the semilinear elliptic equations in cylindrical domains, P115, DOI DOI 10.1016/B978-0-12-574249-8.50011-0
[8]   MAXIMAL DISPLACEMENT OF BRANCHING BROWNIAN-MOTION [J].
BRAMSON, MD .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1978, 31 (05) :531-581
[9]  
FIFE PC, 1977, ARCH RATION MECH AN, V65, P335, DOI 10.1007/BF00250432
[10]   The wave of advance of advantageous genes [J].
Fisher, RA .
ANNALS OF EUGENICS, 1937, 7 :355-369