Factors for increasing positive predictive value of pneumothorax detection on chest radiographs using artificial intelligence

被引:1
|
作者
Lee, Seungsoo [1 ,2 ]
Kim, Eun-Kyung [1 ,2 ]
Han, Kyunghwa [3 ]
Ryu, Leeha [4 ]
Lee, Eun Hye [5 ]
Shin, Hyun Joo [1 ,2 ,6 ]
机构
[1] Yonsei Univ, Yongin Severance Hosp, Res Inst Radiol Sci, Dept Radiol,Coll Med, 363 Dongbaekjukjeon Daero, Yongin 16995, Gyeonggi Do, South Korea
[2] Yonsei Univ, Yongin Severance Hosp, Ctr Clin Imaging Data Sci, Coll Med, 363 Dongbaekjukjeon Daero, Yongin 16995, Gyeonggi Do, South Korea
[3] Yonsei Univ, Severance Hosp, Res Inst Radiol Sci, Dept Radiol,Coll Med, 50-1 Yonsei Ro, Seoul 03722, South Korea
[4] Yonsei Univ, Grad Sch, Dept Biostat & Comp, 50-1 Yonsei Ro, Seoul 03722, South Korea
[5] Yonsei Univ, Yongin Severance Hosp, Dept Internal Med, Div Pulmonol Allergy & Crit Care Med,Coll Med, 363 Dongbaekjukjeon Daero, Yongin 16995, Gyeonggi Do, South Korea
[6] Yonsei Univ, Yongin Severance Hosp, Ctr Digital Hlth, Coll Med, 363 Dongbaekjukjeon Daero, Yongin 16995, Gyeonggi Do, South Korea
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Pneumothorax; Artificial intelligence; Lung; Software; Predictive value of tests;
D O I
10.1038/s41598-024-70780-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study evaluated the positive predictive value (PPV) of artificial intelligence (AI) in detecting pneumothorax on chest radiographs (CXRs) and its affecting factors. Patients determined to have pneumothorax on CXR by a commercial AI software from March to December 2021 were included retrospectively. The PPV was evaluated according to the true-positive (TP) and false-positive (FP) diagnosis determined by radiologists. To know the factors that might influence the results, logistic regression with generalized estimating equation was used. Among a total of 87,658 CXRs, 308 CXRs with 331 pneumothoraces from 283 patients were finally included. The overall PPV of AI about pneumothorax was 41.1% (TF:FP = 136:195). The PA view (odds ratio [OR], 29.837; 95% confidence interval [CI], 15.062-59.107), high abnormality score (OR, 1.081; 95% CI, 1.066-1.097), large amount of pneumothorax (OR, 1.005; 95% CI, 1.003-1.007), presence of ipsilateral atelectasis (OR, 3.508; 95% CI, 1.509-8.156) and a small amount of ipsilateral pleural effusion (OR, 5.277; 95% CI, 2.55-10.919) had significant effects on the increasing PPV. Therefore, PPV for pneumothorax diagnosis using AI can vary based on patients' factors, image-acquisition protocols, and the presence of concurrent lesions on CXR.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Seamless Integration of Artificial Intelligence Into the Clinical Environment: Our Experience With a Novel Pneumothorax Detection Artificial Intelligence Algorithm
    Pierce, Jonathan D.
    Rosipko, Beverly
    Youngblood, Lisa
    Gilkeson, Robert C.
    Gupta, Amit
    Bittencourt, Leonardo Kayat
    JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2021, 18 (11) : 1497 - 1505
  • [42] Artificial Intelligence Framework for Efficient Detection and Classification of Pneumonia Using Chest Radiography Images
    Alqudah, Ali Mohammad
    Qazan, Shoroq
    Masad, Ihssan S.
    JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2021, 41 (05) : 599 - 609
  • [43] Artificial Intelligence Framework for Efficient Detection and Classification of Pneumonia Using Chest Radiography Images
    Ali Mohammad Alqudah
    Shoroq Qazan
    Ihssan S. Masad
    Journal of Medical and Biological Engineering, 2021, 41 : 599 - 609
  • [44] Artificial intelligence for the detection of airway nodules in chest CT scans
    Hendrix, Ward
    Hendrix, Nils
    Scholten, Ernst T.
    van Ginneken, Bram
    Prokop, Mathias
    Rutten, Matthieu
    Jacobs, Colin
    EUROPEAN RADIOLOGY, 2025,
  • [45] Artificial Intelligence in Lung Cancer Screening: Accuracy and Predictive Value
    Santos, R. S. D.
    Teles, G. B. D. S.
    Chate, R. C.
    Szarf, G.
    Franceschini, J. P.
    De Araujo Neto, C. A.
    Ghefter, M.
    Drokin, I.
    Guimaraes, M.
    Hochhegger, B.
    JOURNAL OF THORACIC ONCOLOGY, 2022, 17 (09) : S83 - S84
  • [46] Detection of the pathological exposure of pulp using an artificial intelligence tool: a multicentric study over periapical radiographs
    A. Altukroni
    A. Alsaeedi
    C. Gonzalez-Losada
    J. H. Lee
    M. Alabudh
    M. Mirah
    S. El-Amri
    O. Ezz El-Deen
    BMC Oral Health, 23
  • [47] Detection of the pathological exposure of pulp using an artificial intelligence tool: a multicentric study over periapical radiographs
    Altukroni, A.
    Alsaeedi, A.
    Gonzalez-Losada, C.
    Lee, J. H.
    Alabudh, M.
    Mirah, M.
    El-Amri, S.
    El-Deen, O. Ezz
    BMC ORAL HEALTH, 2023, 23 (01)
  • [48] Assessment of landmark detection in cephalometric radiographs with different conditions of brightness and contrast using the an artificial intelligence software
    Menezes, Liciane dos Santos
    Silva, Thaisa Pinheiro
    Lima dos Santos, Marcos Antonio
    Hughes, Mariana Mendonca
    Mariano Souza, Saulo dos Reis
    Leite Ribeiro, Patricia Miranda
    Luiz de Freitas, Paulo Henrique
    Takeshita, Wilton Mitsunari
    DENTOMAXILLOFACIAL RADIOLOGY, 2023, 52 (08)
  • [49] Artificial Intelligence to Assess Tracheal Tubes and Central Venous Catheters in Chest Radiographs Using an Algorithmic Approach With Adjustable Positioning Definitions
    Rueckel, Johannes
    Huemmer, Christian
    Shahidi, Casra
    Buizza, Giulia
    Hoppe, Boj Friedrich
    Liebig, Thomas
    Ricke, Jens
    Rudolph, Jan
    Sabel, Bastian Oliver
    INVESTIGATIVE RADIOLOGY, 2024, 59 (04) : 306 - 313
  • [50] Artificial intelligence vs. radiologist: accuracy of wrist fracture detection on radiographs
    Cohen, Mathieu
    Puntonet, Julien
    Sanchez, Julien
    Kierszbaum, Elliott
    Crema, Michel
    Soyer, Philippe
    Dion, Elisabeth
    EUROPEAN RADIOLOGY, 2023, 33 (06) : 3974 - 3983