Factors for increasing positive predictive value of pneumothorax detection on chest radiographs using artificial intelligence

被引:1
|
作者
Lee, Seungsoo [1 ,2 ]
Kim, Eun-Kyung [1 ,2 ]
Han, Kyunghwa [3 ]
Ryu, Leeha [4 ]
Lee, Eun Hye [5 ]
Shin, Hyun Joo [1 ,2 ,6 ]
机构
[1] Yonsei Univ, Yongin Severance Hosp, Res Inst Radiol Sci, Dept Radiol,Coll Med, 363 Dongbaekjukjeon Daero, Yongin 16995, Gyeonggi Do, South Korea
[2] Yonsei Univ, Yongin Severance Hosp, Ctr Clin Imaging Data Sci, Coll Med, 363 Dongbaekjukjeon Daero, Yongin 16995, Gyeonggi Do, South Korea
[3] Yonsei Univ, Severance Hosp, Res Inst Radiol Sci, Dept Radiol,Coll Med, 50-1 Yonsei Ro, Seoul 03722, South Korea
[4] Yonsei Univ, Grad Sch, Dept Biostat & Comp, 50-1 Yonsei Ro, Seoul 03722, South Korea
[5] Yonsei Univ, Yongin Severance Hosp, Dept Internal Med, Div Pulmonol Allergy & Crit Care Med,Coll Med, 363 Dongbaekjukjeon Daero, Yongin 16995, Gyeonggi Do, South Korea
[6] Yonsei Univ, Yongin Severance Hosp, Ctr Digital Hlth, Coll Med, 363 Dongbaekjukjeon Daero, Yongin 16995, Gyeonggi Do, South Korea
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Pneumothorax; Artificial intelligence; Lung; Software; Predictive value of tests;
D O I
10.1038/s41598-024-70780-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study evaluated the positive predictive value (PPV) of artificial intelligence (AI) in detecting pneumothorax on chest radiographs (CXRs) and its affecting factors. Patients determined to have pneumothorax on CXR by a commercial AI software from March to December 2021 were included retrospectively. The PPV was evaluated according to the true-positive (TP) and false-positive (FP) diagnosis determined by radiologists. To know the factors that might influence the results, logistic regression with generalized estimating equation was used. Among a total of 87,658 CXRs, 308 CXRs with 331 pneumothoraces from 283 patients were finally included. The overall PPV of AI about pneumothorax was 41.1% (TF:FP = 136:195). The PA view (odds ratio [OR], 29.837; 95% confidence interval [CI], 15.062-59.107), high abnormality score (OR, 1.081; 95% CI, 1.066-1.097), large amount of pneumothorax (OR, 1.005; 95% CI, 1.003-1.007), presence of ipsilateral atelectasis (OR, 3.508; 95% CI, 1.509-8.156) and a small amount of ipsilateral pleural effusion (OR, 5.277; 95% CI, 2.55-10.919) had significant effects on the increasing PPV. Therefore, PPV for pneumothorax diagnosis using AI can vary based on patients' factors, image-acquisition protocols, and the presence of concurrent lesions on CXR.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Multi-center validation of an artificial intelligence system for detection of COVID-19 on chest radiographs in symptomatic patients
    Michael D. Kuo
    Keith W. H. Chiu
    David S. Wang
    Anna Rita Larici
    Dmytro Poplavskiy
    Adele Valentini
    Alessandro Napoli
    Andrea Borghesi
    Guido Ligabue
    Xin Hao B. Fang
    Hing Ki C. Wong
    Sailong Zhang
    John R. Hunter
    Abeer Mousa
    Amato Infante
    Lorenzo Elia
    Salvatore Golemi
    Leung Ho P. Yu
    Christopher K. M. Hui
    Bradley J. Erickson
    European Radiology, 2023, 33 : 23 - 33
  • [32] Multi-center validation of an artificial intelligence system for detection of COVID-19 on chest radiographs in symptomatic patients
    Kuo, Michael D.
    Chiu, Keith W. H.
    Wang, David S.
    Larici, Anna Rita
    Poplavskiy, Dmytro
    Valentini, Adele
    Napoli, Alessandro
    Borghesi, Andrea
    Ligabue, Guido
    Fang, Xin Hao B.
    Wong, Hing Ki C.
    Zhang, Sailong
    Hunter, John R.
    Mousa, Abeer
    Infante, Amato
    Elia, Lorenzo
    Golemi, Salvatore
    Yu, Leung Ho P.
    Hui, Christopher K. M.
    Erickson, Bradley J.
    EUROPEAN RADIOLOGY, 2023, 33 (01) : 23 - 33
  • [33] Detection and identification of cardiac implanted electronic devices in a large data set of chest radiographs using semi-supervised artificial intelligence methods
    Lauzier, Pascal Theriault
    Gomes, Daniel Garcia
    Weng, Willy
    Sadek, Mouhannad M.
    Zakutney, Timothy
    Bernier, Martin L.
    Birnie, David
    HEART RHYTHM, 2023, 20 (04) : 642 - 643
  • [34] Clinical validation of an artificial intelligence algorithm for classifying tuberculosis and pulmonary findings in chest radiographs
    de Camargo, Thiago Fellipe Ortiz
    Ribeiro, Guilherme Alberto Sousa
    da Silva, Maria Carolina Bueno
    da Silva, Luan Oliveira
    Torres, Pedro Paulo Teixeira e Silva
    da Silva, Denise do Socorro Rodrigues
    de Santos, Mayler Olombrada Nunes
    Salibe Filho, William
    Rosa, Marcela Emer Egypto
    Novaes, Magdala de Araujo
    Massarutto, Thiago Augusto
    Landi Junior, Osvaldo
    Yanata, Elaine
    Reis, Marcio Rodrigues da Cunha
    Szarf, Gilberto
    Netto, Pedro Vieira Santana
    de Paiva, Joselisa Peres Queiroz
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2025, 8
  • [35] Evaluation of the Performance of an Artificial Intelligence (AI) Algorithm in Detecting Thoracic Pathologies on Chest Radiographs
    Bettinger, Hubert
    Lenczner, Gregory
    Guigui, Jean
    Rotenberg, Luc
    Zerbib, Elie
    Attia, Alexandre
    Vidal, Julien
    Beaumel, Pauline
    DIAGNOSTICS, 2024, 14 (11)
  • [36] Quantitative Measurement of Pneumothorax Using Artificial Intelligence Management Model and Clinical Application
    Kim, Dohun
    Lee, Jae-Hyeok
    Kim, Si-Wook
    Hong, Jong-Myeon
    Kim, Sung-Jin
    Song, Minji
    Choi, Jong-Mun
    Lee, Sun-Yeop
    Yoon, Hongjun
    Yoo, Jin-Young
    DIAGNOSTICS, 2022, 12 (08)
  • [37] An artificial intelligence approach to automatic tooth detection and numbering in panoramic radiographs
    Bilgir, Elif
    Bayrakdar, Ibrahim Sevki
    Celik, Ozer
    Orhan, Kaan
    Akkoca, Fatma
    Saglam, Hande
    Odabas, Alper
    Aslan, Ahmet Faruk
    Ozcetin, Cemre
    Killi, Musa
    Rozylo-Kalinowska, Ingrid
    BMC MEDICAL IMAGING, 2021, 21 (01)
  • [38] Artificial intelligence-based detection of dens invaginatus in panoramic radiographs
    Ayse Hanne Sarı
    Hasan Sarı
    Guldane Magat
    BMC Oral Health, 25 (1)
  • [39] Performance of artificial intelligence-based software for the automatic detection of lung lesions on chest radiographs of patients with suspected lung cancer
    Takamatsu, Atsushi
    Ueno, Midori
    Yoshida, Kotaro
    Kobayashi, Takeshi
    Kobayashi, Satoshi
    Gabata, Toshifumi
    JAPANESE JOURNAL OF RADIOLOGY, 2024, 42 (03) : 291 - 299
  • [40] Performance of artificial intelligence-based software for the automatic detection of lung lesions on chest radiographs of patients with suspected lung cancer
    Atsushi Takamatsu
    Midori Ueno
    Kotaro Yoshida
    Takeshi Kobayashi
    Satoshi Kobayashi
    Toshifumi Gabata
    Japanese Journal of Radiology, 2024, 42 : 291 - 299