Factors for increasing positive predictive value of pneumothorax detection on chest radiographs using artificial intelligence

被引:1
|
作者
Lee, Seungsoo [1 ,2 ]
Kim, Eun-Kyung [1 ,2 ]
Han, Kyunghwa [3 ]
Ryu, Leeha [4 ]
Lee, Eun Hye [5 ]
Shin, Hyun Joo [1 ,2 ,6 ]
机构
[1] Yonsei Univ, Yongin Severance Hosp, Res Inst Radiol Sci, Dept Radiol,Coll Med, 363 Dongbaekjukjeon Daero, Yongin 16995, Gyeonggi Do, South Korea
[2] Yonsei Univ, Yongin Severance Hosp, Ctr Clin Imaging Data Sci, Coll Med, 363 Dongbaekjukjeon Daero, Yongin 16995, Gyeonggi Do, South Korea
[3] Yonsei Univ, Severance Hosp, Res Inst Radiol Sci, Dept Radiol,Coll Med, 50-1 Yonsei Ro, Seoul 03722, South Korea
[4] Yonsei Univ, Grad Sch, Dept Biostat & Comp, 50-1 Yonsei Ro, Seoul 03722, South Korea
[5] Yonsei Univ, Yongin Severance Hosp, Dept Internal Med, Div Pulmonol Allergy & Crit Care Med,Coll Med, 363 Dongbaekjukjeon Daero, Yongin 16995, Gyeonggi Do, South Korea
[6] Yonsei Univ, Yongin Severance Hosp, Ctr Digital Hlth, Coll Med, 363 Dongbaekjukjeon Daero, Yongin 16995, Gyeonggi Do, South Korea
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Pneumothorax; Artificial intelligence; Lung; Software; Predictive value of tests;
D O I
10.1038/s41598-024-70780-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study evaluated the positive predictive value (PPV) of artificial intelligence (AI) in detecting pneumothorax on chest radiographs (CXRs) and its affecting factors. Patients determined to have pneumothorax on CXR by a commercial AI software from March to December 2021 were included retrospectively. The PPV was evaluated according to the true-positive (TP) and false-positive (FP) diagnosis determined by radiologists. To know the factors that might influence the results, logistic regression with generalized estimating equation was used. Among a total of 87,658 CXRs, 308 CXRs with 331 pneumothoraces from 283 patients were finally included. The overall PPV of AI about pneumothorax was 41.1% (TF:FP = 136:195). The PA view (odds ratio [OR], 29.837; 95% confidence interval [CI], 15.062-59.107), high abnormality score (OR, 1.081; 95% CI, 1.066-1.097), large amount of pneumothorax (OR, 1.005; 95% CI, 1.003-1.007), presence of ipsilateral atelectasis (OR, 3.508; 95% CI, 1.509-8.156) and a small amount of ipsilateral pleural effusion (OR, 5.277; 95% CI, 2.55-10.919) had significant effects on the increasing PPV. Therefore, PPV for pneumothorax diagnosis using AI can vary based on patients' factors, image-acquisition protocols, and the presence of concurrent lesions on CXR.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Optimizing adult-oriented artificial intelligence for pediatric chest radiographs by adjusting operating points
    Shin, Hyun Joo
    Han, Kyunghwa
    Son, Nak-Hoon
    Kim, Eun-Kyung
    Kim, Min Jung
    Gatidis, Sergios
    Vasanawala, Shreyas
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [22] Clinical Implication and Prognostic Value of Artificial-Intelligence-Based Results of Chest Radiographs for Assessing Clinical Outcomes of COVID-19 Patients
    Shin, Hyun Joo
    Kim, Min Hyung
    Son, Nak-Hoon
    Han, Kyunghwa
    Kim, Eun-Kyung
    Kim, Yong Chan
    Park, Yoon Soo
    Lee, Eun Hye
    Kyong, Taeyoung
    DIAGNOSTICS, 2023, 13 (12)
  • [23] Artificial intelligence-driven automated lung sizing from chest radiographs
    Ismail, Mostafa K.
    Araki, Tetsuro
    Gefter, Warren B.
    Suzuki, Yoshikazu
    Raevsky, Allie
    Saleh, Aya
    Yusuf, Sophia
    Marquis, Abigail
    Alcudia, Alyster
    Duncan, Ian
    Schaubel, Douglas E.
    Cantu, Edward
    Rizi, Rahim
    AMERICAN JOURNAL OF TRANSPLANTATION, 2025, 25 (01) : 198 - 203
  • [24] Artificial intelligence system for identification of false-negative interpretations in chest radiographs
    Eui Jin Hwang
    Jongsoo Park
    Wonju Hong
    Hyun-Ju Lee
    Hyewon Choi
    Hyungjin Kim
    Ju Gang Nam
    Jin Mo Goo
    Soon Ho Yoon
    Chang Hyun Lee
    Chang Min Park
    European Radiology, 2022, 32 : 4468 - 4478
  • [25] Radiographic chest wall abnormalities in primary spontaneous pneumothorax identified by artificial intelligence
    Chiu, Ming-Chuan
    Tsai, Stella Chin-Shaw
    Bai, Zhe-Rui
    Lin, Abraham
    Chang, Chi-Chang
    Wang, Guo-Zhi
    Lin, Frank Cheau-Feng
    HELIYON, 2024, 10 (09)
  • [26] Role of Artificial Intelligence on Chest Radiographs for Detecting Resectable Early Lung Cancer
    Lee, E.
    Kwak, S.
    Shin, H. J.
    JOURNAL OF THORACIC ONCOLOGY, 2022, 17 (09) : S521 - S521
  • [27] Artificial intelligence system for identification of false-negative interpretations in chest radiographs
    Hwang, Eui Jin
    Park, Jongsoo
    Hong, Wonju
    Lee, Hyun-Ju
    Choi, Hyewon
    Kim, Hyungjin
    Nam, Ju Gang
    Goo, Jin Mo
    Yoon, Soon Ho
    Lee, Chang Hyun
    Park, Chang Min
    EUROPEAN RADIOLOGY, 2022, 32 (07) : 4468 - 4478
  • [28] Deep Learning Systems for Pneumothorax Detection on Chest Radiographs: A Multicenter External Validation Study
    Thian, Yee Liang
    Ng, Dianwen
    Hallinan, James Thomas Patrick Decourcy
    Jagmohan, Pooja
    Sia, Soon Yiew
    Tan, Cher Heng
    Ting, Yong Han
    Kei, Pin Lin
    Pulickal, Geoiphy George
    Tiong, Vincent Tze Yang
    Quek, Swee Tian
    Feng, Mengling
    RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2021, 3 (04)
  • [29] Diagnostic Performance of Artificial Intelligence in Chest Radiographs Referred from the Emergency Department
    Alcolea, Julia Lopez
    Alfonso, Ana Fernandez
    Alonso, Raquel Cano
    Vazquez, Ana Alvarez
    Moreno, Alejandro Diaz
    Castellanos, David Garcia
    Greciano, Lucia Sanabria
    Hayoun, Chawar
    Rodriguez, Manuel Recio
    Vazquez, Cristina Andreu
    Vasallo, Israel John Thuissard
    de Vega, Vicente Martinez
    DIAGNOSTICS, 2024, 14 (22)
  • [30] Chest X-ray Foreign Objects Detection Using Artificial Intelligence
    Kufel, Jakub
    Bargiel-Laczek, Katarzyna
    Kozlik, Maciej
    Czogalik, Lukasz
    Dudek, Piotr
    Magiera, Mikolaj
    Bartnikowska, Wiktoria
    Lis, Anna
    Paszkiewicz, Iga
    Kocot, Szymon
    Cebula, Maciej
    Gruszczynska, Katarzyna
    Nawrat, Zbigniew
    JOURNAL OF CLINICAL MEDICINE, 2023, 12 (18)