From optimal observables to machine learning: an effective-field-theory analysis of e+e-→ W+W- at future lepton colliders

被引:3
作者
Chai, Shengdu [1 ,2 ]
Gu, Jiayin [1 ,2 ,3 ]
Li, Lingfeng [4 ]
机构
[1] Fudan Univ, Dept Phys, 2005 Song Hu Rd, Shanghai 200438, Peoples R China
[2] Fudan Univ, Ctr Field Theory & Particle Phys, 2005 Song Hu Rd, Shanghai 200438, Peoples R China
[3] Fudan Univ, Key Lab Nucl Phys & Ion Beam Applicat, MOE, 220 Handan Rd, Shanghai 200433, Peoples R China
[4] Brown Univ, Dept Phys, 182 Hope St, Providence, RI 02912 USA
基金
中国国家自然科学基金;
关键词
Electroweak Precision Physics; SMEFT; COUPLINGS;
D O I
10.1007/JHEP05(2024)292
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We apply machine-learning techniques to the effective-field-theory analysis of the e(+)e(-) -> W+W- processes at future lepton colliders, and demonstrate their advantages in comparison with conventional methods, such as optimal observables. In particular, we show that machine-learning methods are more robust to detector effects and backgrounds, and could in principle produce unbiased results with sufficient Monte Carlo simulation samples that accurately describe experiments. This is crucial for the analyses at future lepton colliders given the outstanding precision of the e(+)e(-) -> W+W- measurement (similar to 10(-4) in terms of anomalous triple gauge couplings or even better) that can be reached. Our framework can be generalized to other effective-field-theory analyses, such as the one of e(+)e(-) -> t (t) over bar or similar processes at muon colliders.
引用
收藏
页数:27
相关论文
共 82 条
[1]   Towards a muon collider [J].
Accettura, Carlotta ;
Adams, Dean ;
Agarwal, Rohit ;
Ahdida, Claudia ;
Aime, Chiara ;
Amapane, Nicola ;
Amorim, David ;
Andreetto, Paolo ;
Anulli, Fabio ;
Appleby, Robert ;
Apresyan, Artur ;
Apyan, Aram ;
Arsenyev, Sergey ;
Asadi, Pouya ;
Mahmoud, Mohammed Attia ;
Azatov, Aleksandr ;
Back, John ;
Balconi, Lorenzo ;
Bandiera, Laura ;
Barlow, Roger ;
Bartosik, Nazar ;
Barzi, Emanuela ;
Batsch, Fabian ;
Bauce, Matteo ;
Berg, J. Scott ;
Bersani, Andrea ;
Bertarelli, Alessandro ;
Bertolin, Alessandro ;
Black, Kevin ;
Boattini, Fulvio ;
Bogacz, Alex ;
Bonesini, Maurizio ;
Bordini, Bernardo ;
Bottaro, Salvatore ;
Bottura, Luca ;
Braghieri, Alessandro ;
Breschi, Marco ;
Bruhwiler, Natalie ;
Buffat, Xavier ;
Buonincontri, Laura ;
Burrows, Philip N. ;
Burt, Graeme ;
Buttazzo, Dario ;
Caiffi, Barbara ;
Calviani, Marco ;
Calzaferri, Simone ;
Calzolari, Daniele ;
Capdevilla, Rodolfo ;
Carli, Christian ;
Casaburo, Fausto .
EUROPEAN PHYSICAL JOURNAL C, 2023, 83 (09)
[2]  
Aime C., 2022, arXiv
[3]   Machine learning the trilinear and light-quark Yukawa couplings from Higgs pair kinematic shapes [J].
Alasfar, Lina ;
Grober, Ramona ;
Grojean, Christophe ;
Paul, Ayan ;
Qian, Zhuoni .
JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (11)
[4]   New physics in the third generation. A comprehensive SMEFT analysis and future prospects [J].
Allwicher, Lukas ;
Cornella, Claudia ;
Isidori, Gino ;
Stefanek, Ben A. .
JOURNAL OF HIGH ENERGY PHYSICS, 2024, 2024 (03)
[5]   Consistent searches for SMEFT effects in non-resonant dijet events [J].
Alte, Stefan ;
Konig, Matthias ;
Shepherd, William .
JOURNAL OF HIGH ENERGY PHYSICS, 2018, (01)
[6]   MadGraph 5: going beyond [J].
Alwall, Johan ;
Herquet, Michel ;
Maltoni, Fabio ;
Mattelaer, Olivier ;
Stelzer, Tim .
JOURNAL OF HIGH ENERGY PHYSICS, 2011, (06)
[7]   Unbinned multivariate observables for global SMEFT analyses from machine learning [J].
Ambrosio, Raquel Gomez ;
ter Hoeve, Jaco ;
Madigan, Maeve ;
Rojo, Juan ;
Sanz, Veronica .
JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (03)
[8]  
[Anonymous], COMPACT LINEAR COLLI, DOI [DOI 10.23731/CYRM-2018-002, 10.23731/CYRM-2018-002]
[9]   LHC study of third-generation scalar leptoquarks with machine-learned likelihoods [J].
Arganda, Ernesto ;
Diaz, Daniel A. ;
Perez, Andres D. ;
Seoane, Rosa M. Sanda ;
Szynkman, Alejandro .
PHYSICAL REVIEW D, 2024, 109 (05)
[10]   Machine-learned exclusion limits without binning [J].
Arganda, Ernesto ;
Perez, Andres D. ;
de los Rios, Martin ;
Sanda Seoane, Rosa Maria .
EUROPEAN PHYSICAL JOURNAL C, 2023, 83 (12)