Magnetic flux rope models and data-driven magnetohydrodynamic simulations of solar eruptions

被引:4
作者
Guo, Yang [1 ,2 ]
Guo, Jinhan [1 ,2 ,3 ]
Ni, Yiwei [1 ,2 ]
Xia, Chun [4 ]
Zhong, Ze [5 ]
Ding, Mingde [1 ,2 ]
Chen, Pengfei [1 ,2 ]
Keppens, Rony [3 ]
机构
[1] Nanjing Univ, Sch Astron & Space Sci, Nanjing 210023, Peoples R China
[2] Nanjing Univ, Key Lab Modern Astron & Astrophys, Nanjing 210023, Peoples R China
[3] Katholieke Univ Leuven, Ctr Math Plasma Astrophys, Dept Math, Celestijnenlaan 200B, B-3001 Leuven, Belgium
[4] Yunnan Univ, Sch Phys & Astron, Kunming 650050, Peoples R China
[5] Shandong Univ, Inst Frontier & Interdisciplinary Sci, Ctr Integrated Res Space Sci Astron & Phys, Qingdao 266237, Peoples R China
基金
欧洲研究理事会;
关键词
Sun: corona; Sun: coronal mass ejections; Sun: magnetic field; Sun: MHD; BOUNDARY INTEGRAL-EQUATION; FORCE-FREE FIELD; VECTOR MAGNETOGRAMS; OPTIMIZATION APPROACH; KINK INSTABILITY; ACTIVE-REGION; OPEN SPACE; EXTRAPOLATION; FILAMENT; ENERGY;
D O I
10.1007/s41614-024-00167-2
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Solar eruptive activities, such as flares, coronal mass ejections (CMEs), and prominence or filament eruptions, pose both scientific and practical challenges to human beings. To understand and predict these phenomena in the future, we have to combine observations, theoretical, and numerical models closely. Data-driven and data-constrained magnetohydrodynamic (MHD) simulations provide a promising tool to utilize observational data and incorporate relevant physics in the solar atmosphere. They employ magnetic field, along with density and temperature observations, as the initial and boundary conditions. Since there are still difficulties in observing the coronal magnetic field routinely and accurately, we have to rely on magnetic field models in most cases. We introduce some frequently used flux rope models, including the Gibson-Low, Titov-D & eacute;moulin, regularized Biot-Savart laws, nonlinear force-free field, and magnetohydrostatic models. In some studies, the static flux rope models constrained by multi-wavelength observations are used. We discuss many suggested techniques for setting the initial and boundary conditions from both observation and theory, and recent successful applications of the data-driven and data-constrained MHD simulations. We find that data-driven and data-constrained MHD simulations could provide new insights into the physical mechanisms of flux rope formation and eruption, CME structure, and MHD waves.
引用
收藏
页数:40
相关论文
共 189 条
[1]   Reconstructing the solar coronal magnetic field as a force-free magnetic field [J].
Amari, T ;
Aly, JJ ;
Luciani, JF ;
Boulmezaoud, TZ ;
Mikic, Z .
SOLAR PHYSICS, 1997, 174 (1-2) :129-149
[2]   Magnetic cage and rope as the key for solar eruptions [J].
Amari, Tahar ;
Canou, Aurelien ;
Aly, Jean-Jacques ;
Delyon, Francois ;
Alauzet, Frederic .
NATURE, 2018, 554 (7691) :211-+
[3]   Characterizing and predicting the magnetic environment leading to solar eruptions [J].
Amari, Tahar ;
Canou, Aurelien ;
Aly, Jean-Jacques .
NATURE, 2014, 514 (7523) :465-+
[4]   First results from THEMIS spectropolarimetric mode [J].
Ariste, AL ;
Rayrole, J ;
Semel, M .
ASTRONOMY & ASTROPHYSICS SUPPLEMENT SERIES, 2000, 142 (01) :137-148
[5]   3D Solar Null Point Reconnection MHD Simulations [J].
Baumann, G. ;
Galsgaard, K. ;
Nordlund, A. .
SOLAR PHYSICS, 2013, 284 (02) :467-487
[6]   Intermittent heating in the solar corona employing a 3D MHD model [J].
Bingert, S. ;
Peter, H. .
ASTRONOMY & ASTROPHYSICS, 2011, 530
[7]   Two-fluid implementation in MPI-AMRVAC with applications to the solar chromosphere [J].
Braileanu, B. Popescu ;
Keppens, R. .
ASTRONOMY & ASTROPHYSICS, 2022, 664
[8]   Global-scale turbulent convection and magnetic dynamo action in the solar envelope [J].
Brun, AS ;
Miesch, MS ;
Toomre, J .
ASTROPHYSICAL JOURNAL, 2004, 614 (02) :1073-1098
[9]   EVIDENCE FOR A PRE-ERUPTIVE TWISTED FLUX ROPE USING THE THEMIS VECTOR MAGNETOGRAPH [J].
Canou, A. ;
Amari, T. ;
Bommier, V. ;
Schmieder, B. ;
Aulanier, G. ;
Li, H. .
ASTROPHYSICAL JOURNAL LETTERS, 2009, 693 (01) :L27-L30
[10]   Scientific instrumentation for the 1.6 m New Solar Telescope in Big Bear [J].
Cao, W. ;
Gorceix, N. ;
Coulter, R. ;
Ahn, K. ;
Rimmele, T. R. ;
Goode, P. R. .
ASTRONOMISCHE NACHRICHTEN, 2010, 331 (06) :636-639