Supertraces on Queerified Algebras

被引:0
作者
Leites D. [1 ]
Shchepochkina I. [2 ]
机构
[1] Department of Mathematics, Stockholm University, Roslagsv. 101, Stockholm
[2] Independent University of Moscow, B. Vlasievsky per., d. 11, Moscow
关键词
16W55; 17B70; Primary; 17B20; Queerification; Secondary; 81Q60; Simple Lie superalgebra; Supertrace; Trace;
D O I
10.1007/s40598-023-00232-7
中图分类号
学科分类号
摘要
We describe supertraces on “queerifications” (see arXiv:2203.06917) of the algebras of matrices of “complex size”, algebras of observables of Calogero–Moser model, Vasiliev higher spin algebras, and (super)algebras of pseudo-differential operators. In the latter case, the supertraces establish complete integrability of the analogs of Euler equations to be written (this is one of several open problems and conjectures offered). © Institute for Mathematical Sciences (IMS), Stony Brook University, NY 2023.
引用
收藏
页码:309 / 321
页数:12
相关论文
共 24 条
[1]  
Adler M., On a trace functional for formal pseudo differential operators and the symplectic structure of the Korteweg–de Vries type equations, Invent. Math, 50, 3, pp. 219-248, (1978)
[2]  
Bernstein J., Leites D., Irreducible representations of type Q, odd trace and odd determinant, C. R. Acad. Bulg. Sci, 35, 3, pp. 285-286, (1982)
[3]  
Bouarroudj S., Krutov A., Leites D., Shchepochkina I., Non-degenerate invariant (Super)symmetric bilinear forms on simple Lie (super)algebras, Algebras Repr. Theory, 21, 5, pp. 897-941, (2018)
[4]  
Bouarroudj S., Lebedev A., Leites D., Shchepochkina I.
[5]  
Duplij S., Siegel W., Bagger J., Concise Encyclopedia of Supersymmetry and Noncommutative Structures in Mathematics and Physics, (2005)
[6]  
Feigin B.L., Lie algebras gl(λ) and cohomology of a Lie algebra of differential operators, Russ. Math. Surv, 43, 2, pp. 169-170, (1988)
[7]  
Herstein I.N., On the Lie and Jordan rings of a simple associative ring, Am. J. Math, 77, pp. 279-285, (1955)
[8]  
Khesin B., Malikov F., Universal Drinfeld–Sokolov reduction and matrices of complex size, Commun. Math. Phys, 175, pp. 113-134, (1996)
[9]  
Konstein S.E., Stekolshchik R.
[10]  
Konstein S.E., Tyutin I.V., The number of independent traces and supertraces on symplectic reflection algebras, J. Nonlinear Math. Phys, 21, 3, pp. 308-335, (2014)