Air quality monitoring device to mitigate the spread of COVID-19 in educational buildings

被引:0
作者
Quiroga, Diego [1 ]
Diaz, Sergio [1 ]
Pastrana, Homero F. [2 ]
机构
[1] Univ Antonio Narino, Fac Mech Elect & Biomed Engn, Bogota, Colombia
[2] Univ Antonio Narino, Doctorate Hlth Sci, Bogota, Colombia
关键词
Air quality monitoring; Carbon dioxide; Particulate matter; COVID-19; pandemic; SARS-CoV-2 transmission risk mitigation;
D O I
10.1007/s44273-024-00033-0
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The COVID-19 pandemic brought significant consequences on healthcare systems, economy, and politics. Nowadays, we know that the pathogen responsible for COVID-19 is transmitted mainly by aerosol droplets exhaled by infected individuals, which remain suspended in indoor air. There has been widespread interest in monitoring the C O 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$CO_2$$\end{document} levels in indoor spaces since an infected patient exhales C O 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$CO_2$$\end{document} and infectious aerosols when breathing. So, we designed and built an Air Quality Monitoring Device (AQMD) that measures and analyzes the levels of C O 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$CO_2$$\end{document} and particulate matter in the classrooms of a university with the aim of mitigating the spread of COVID-19. We divided the AQMD design into 2 phases: (i) data measurement and (ii) estimation of infection risk. Specifically, we measured the air quality in 3 classrooms of a university during different types of activities. Using these data, we calculated the recommended C O 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$CO_2$$\end{document} threshold for our classroom setting and estimated the probability of COVID-19 infection of a susceptible person. Our research shows that indoor C O 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$CO_2$$\end{document} concentrations and the probability of COVID-19 infection are influenced mainly by the type of activity and the number of windows open; besides, the number of students does not significantly impact the indoor C O 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$CO_2$$\end{document} concentrations levels because the range of students in the test scenario (18 to 31) was relatively small.
引用
收藏
页数:13
相关论文
共 22 条
  • [1] Effects of the COVID-19 Pandemic on Indoor Air Quality and Thermal Comfort of Primary Schools in Winter in a Mediterranean Climate
    Alonso, Alicia
    Llanos, Jesus
    Escandon, Rocio
    Sendra, Juan J.
    [J]. SUSTAINABILITY, 2021, 13 (05) : 1 - 17
  • [2] Monitoring carbon dioxide to quantify the risk of indoor airborne transmission of COVID-19
    Bazant, Martin Z.
    Kodio, Ousmane
    Cohen, Alexander E.
    Khan, Kasim
    Gu, Zongyu
    Bush, John W. M.
    [J]. FLOW, 2021, 1
  • [3] Estimation of airborne viral emission: Quanta emission rate of SARS-CoV-2 for infection risk assessment
    Buonanno, G.
    Stabile, L.
    Morawska, L.
    [J]. ENVIRONMENT INTERNATIONAL, 2020, 141 (141)
  • [4] Caeda JD., 2022, Design and Development of IoT-based SMART Monitoring System for Hydro-Powered Generator, P1, DOI [10.1109/ICEET56468.2022.10007109, DOI 10.1109/ICEET56468.2022.10007109]
  • [5] CO2 concentration monitoring inside educational buildings as a strategic tool to reduce the risk of Sars-CoV-2 airborne transmission
    Di Gilio, Alessia
    Palmisani, Jolanda
    Pulimeno, Manuela
    Cerino, Fabio
    Cacace, Mirko
    Miani, Alessandro
    de Gennaro, Gianluigi
    [J]. ENVIRONMENTAL RESEARCH, 2021, 202
  • [6] Evans M, 2020, medRxiv, DOI [10.1101/2020.05.21.20108894, 10.1101/2020.05.21.20108894, DOI 10.1101/2020.05.21.20108894]
  • [7] Eykelbosh A., 2021, Indoor CO2 sensors for COVID-19 risk mitigation: Current guidance and limitations
  • [8] Hou D., 2021, MEDRXIV, DOI [10.1101/2021.01.29.21250791, DOI 10.1101/2021.01.29.21250791]
  • [9] Lednickya JA, 2020, INT J INFECT DIS, V100, P476, DOI [10.1016/j.ijid.2020.09.025, 10.1101/2020.08.03.20167395]
  • [10] Investigation of the concentration of bacteria and their cell envelope components in indoor air in two elementary schools
    Liu, LJS
    Krahmer, M
    Fox, A
    Feigley, CE
    Featherstone, A
    Saraf, A
    Larsson, L
    [J]. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION, 2000, 50 (11) : 1957 - 1967