Exploring Scoring Function Space: Developing Computational Models for Drug Discovery

被引:6
作者
Bitencourt-Ferreira, Gabriela [1 ]
Villarreal, Marcos A. [2 ]
Quiroga, Rodrigo [2 ]
Biziukova, Nadezhda [3 ]
Poroikov, Vladimir [3 ]
Tarasova, Olga [3 ]
de Azevedo Junior, Walter F. [1 ,4 ]
机构
[1] Pontifical Catholic Univ Rio Grande do Sul PUCRS, Av Ipiranga 6681, BR-90619900 Porto Alegre, RS, Brazil
[2] Univ Nacl Cordoba, Fac Ciencias Quim, CONICET Dept Matemat & Fis, Inst Invest Fisicoquim Cordoba INFIQC, Ciudad Univ, Cordoba, Argentina
[3] Inst Biomed Chem, Pogodinskaya Str 10-8, Moscow 119121, Russia
[4] Pontifical Catholic Univ Rio Grande do Sul PUCRS, Specializat Program Bioinformat, Av Ipiranga 6681, BR-90619900 Porto Alegre, RS, Brazil
基金
俄罗斯基础研究基金会;
关键词
Scoring function space; drug discovery; protein space; protein-ligand interactions; machine learning; systems biology; MOLECULAR-DYNAMICS SIMULATIONS; LIGAND BINDING-AFFINITY; PROTEIN DATA-BANK; MAIN PROTEASE; ACCURATE PREDICTION; DOCKING SIMULATIONS; CHEMICAL SPACE; SARS-COV-2; BIOLOGY; INHIBITOR;
D O I
10.2174/0929867330666230321103731
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background The idea of scoring function space established a systems-level approach to address the development of models to predict the affinity of drug molecules by those interested in drug discovery.Objective Our goal here is to review the concept of scoring function space and how to explore it to develop machine learning models to address protein-ligand binding affinity.Methods We searched the articles available in PubMed related to the scoring function space. We also utilized crystallographic structures found in the protein data bank (PDB) to represent the protein space.Results The application of systems-level approaches to address receptor-drug interactions allows us to have a holistic view of the process of drug discovery. The scoring function space adds flexibility to the process since it makes it possible to see drug discovery as a relationship involving mathematical spaces.Conclusion The application of the concept of scoring function space has provided us with an integrated view of drug discovery methods. This concept is useful during drug discovery, where we see the process as a computational search of the scoring function space to find an adequate model to predict receptor-drug binding affinity.
引用
收藏
页码:2361 / 2377
页数:17
相关论文
共 197 条
[101]   Lessons Learned in Empirical Scoring with smina from the CSAR 2011 Benchmarking Exercise [J].
Koes, David Ryan ;
Baumgartner, Matthew P. ;
Camacho, Carlos J. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2013, 53 (08) :1893-1904
[102]   Recent Drug-Repurposing-Driven Advances in the Discovery of Novel Antibiotics [J].
Konreddy, Ananda Kumar ;
Rani, Grandhe Usha ;
Lee, Kyeong ;
Choi, Yongseok .
CURRENT MEDICINAL CHEMISTRY, 2019, 26 (28) :5363-5388
[103]   Functional classification of protein kinase binding sites using cavbase [J].
Kuhn, Daniel ;
Weskamp, Nils ;
Hullermeier, Eyke ;
Klebe, Gerhard .
CHEMMEDCHEM, 2007, 2 (10) :1432-1447
[104]   Big studies dim hopes for hydroxychloroquine [J].
Kupferschmidt, Kai .
SCIENCE, 2020, 368 (6496) :1166-1167
[105]   Scaffold Diversity of Exemplified Medicinal Chemistry Space [J].
Langdon, Sarah R. ;
Brown, Nathan ;
Blagg, Julian .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2011, 51 (09) :2174-2185
[106]   Deep learning methods for 3D structural proteome and interactome modeling [J].
Lee, Dongjin ;
Xiong, Dapeng ;
Wierbowski, Shayne ;
Li, Le ;
Liang, Siqi ;
Yu, Haiyuan .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2022, 73
[107]   The Impact of Docking Pose Generation Error on the Prediction of Binding Affinity [J].
Li, Hongjian ;
Leung, Kwong-Sak ;
Wong, Man-Hon ;
Ballester, Pedro J. .
COMPUTATIONAL INTELLIGENCE METHODS FOR BIOINFORMATICS AND BIOSTATISTICS, CIBB 2014, 2015, 8623 :231-241
[108]   istar: A Web Platform for Large-Scale Protein-Ligand Docking [J].
Li, Hongjian ;
Leung, Kwong-Sak ;
Ballester, Pedro J. ;
Wong, Man-Hon .
PLOS ONE, 2014, 9 (01)
[109]   Crystal structure of SARS-CoV-2 main protease in complex with the natural product inhibitor shikonin illuminates a unique binding mode [J].
Li, Jian ;
Zhou, Xuelan ;
Zhang, Yan ;
Zhong, Fanglin ;
Lin, Cheng ;
McCormick, Peter J. ;
Jiang, Feng ;
Luo, Jun ;
Zhou, Huan ;
Wang, Qisheng ;
Fu, Yang ;
Duan, Jingjing ;
Zhang, Jin .
SCIENCE BULLETIN, 2021, 66 (07) :661-663
[110]   Predicting protein-ligand interactions based on bow-pharmacological space and Bayesian additive regression trees [J].
Li, Li ;
Koh, Ching Chiek ;
Reker, Daniel ;
Brown, J. B. ;
Wang, Haishuai ;
Lee, Nicholas Keone ;
Liow, Hien-haw ;
Dai, Hao ;
Fan, Huai-Meng ;
Chen, Luonan ;
Wei, Dong-Qing .
SCIENTIFIC REPORTS, 2019, 9 (1)