Low Power Clock Generator Design With CMOS Signaling

被引:2
作者
Fan, Yongping [1 ]
Young, Ian A. [1 ]
机构
[1] Intel Corp, Technol Dev, Hillsboro, OR 97124 USA
来源
IEEE OPEN JOURNAL OF THE SOLID-STATE CIRCUITS SOCIETY | 2021年 / 1卷
关键词
Delay locked loop; phase locked loop; PLL; DLL; phase interpolator; PI; DTC; clock distribution; CMOS; clock generators; inductor peaking; DATA RECOVERY CIRCUIT;
D O I
10.1109/OJSSCS.2021.3118339
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The requirements for computing with higher energy efficiency in the datacenter and for longer battery life in laptop computers, cell phones, and other IoT devices while increasing performance with higher frequency and more cores, drive the needs for more clock generators with increased performance (frequency and jitter) and lower power budgets. The traditional current mode low swing clock generators were used widely in industry about 10 years ago. Although it had the advantage of higher supply noise rejection due to the differential nature of the architectures, however, it had the disadvantages of high-power consumption, large layout area, and not friendly to process scaling. Contrary to current mode low swing design, clock generator architectures with CMOS large swing signaling, which have advantages of low power consumption, small area, and based on circuits friendly to process scaling, have been widely adopted for clocking generation in the industry since 2009. In this paper, phase locked loops, delay locked loops, phase interpolators, high resolution digital to time converter and clock distribution techniques with CMOS large swing signaling will be discussed and reviewed.
引用
收藏
页码:162 / 170
页数:9
相关论文
共 26 条
[1]  
[Anonymous], 1994, IEEE J. Solid-State Circuits, V29, P1491
[2]   A 10-gb/s 5-tap DFE/4-tap FFE transceiver in 90-nm CMOS technology [J].
Bulzacchelli, John F. ;
Meghelli, Mounir ;
Rylov, Sergey V. ;
Rhee, Woogeun ;
Rylyakov, Alexander V. ;
Ainspan, Herschel A. ;
Parker, Benjamin D. ;
Beakes, Michael P. ;
Chung, Aichin ;
Beukema, Troy J. ;
Pepejugoski, Petar K. ;
Shan, Lei ;
Kwark, Young H. ;
Gowda, Sudhir ;
Friedman, Daniel J. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2006, 41 (12) :2885-2900
[3]  
Chen S, 2018, ISSCC DIG TECH PAP I, P390, DOI 10.1109/ISSCC.2018.8310348
[4]   A 1.4 pJ/bit, Power-Scalable 16x12 Gb/s Source-Synchronous I/O With DFE Receiver in 32 nm SOI CMOS Technology [J].
Dickson, Timothy O. ;
Liu, Yong ;
Rylov, Sergey V. ;
Agrawal, Ankur ;
Kim, Seongwon ;
Hsieh, Ping-Hsuan ;
Bulzacchelli, John F. ;
Ferriss, Mark ;
Ainspan, Herschel A. ;
Rylyakov, Alexander ;
Parker, Benjamin D. ;
Beakes, Michael P. ;
Baks, Christian ;
Shan, Lei ;
Kwark, Young ;
Tierno, Jose A. ;
Friedman, Daniel J. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2015, 50 (08) :1917-1931
[5]  
Fan Y., 2009, U.S. Patent, Patent No. 7501904
[6]  
Fan YP, 2019, ISSCC DIG TECH PAP I, V62, P320, DOI 10.1109/ISSCC.2019.8662526
[7]  
Im J, 2020, ISSCC DIG TECH PAP I, P116, DOI 10.1109/ISSCC19947.2020.9063081
[8]  
Joshi S, 2009, SYMP VLSI CIRCUITS, P52
[9]   A 224Gb/s DAC-Based PAM-4 Transmitter with 8-Tap FFE in 10nm CMOS [J].
Kim, Jihwan ;
Kundu, Sandipan ;
Balankutty, Ajay ;
Beach, Matthew ;
Kim, Bong Chan ;
Kim, Stephen ;
Liu, Yutao ;
Murthy, Savyassachi Keshava ;
Wali, Priya ;
Yu, Kai ;
Kim, Hyung Seok ;
Liu, Chuan-chang ;
Shin, Dongseok ;
Cohen, Ariel ;
Fan, Yongping ;
O'Mahony, Frank .
2021 IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE (ISSCC), 2021, 64 :126-+
[10]   A 10-Gb/s CMOS clock and data recovery circuit with an analog phase interpolator [J].
Kreienkamp, R ;
Langmann, U ;
Zimmermann, C ;
Aoyama, T ;
Siedhoff, H .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2005, 40 (03) :736-743