CMSE: Cross-Modal Semantic Enhancement Network for Classification of Hyperspectral and LiDAR Data

被引:4
|
作者
Han, Wenqi [1 ]
Miao, Wang [1 ]
Geng, Jie [1 ]
Jiang, Wen [1 ]
机构
[1] Northwestern Polytech Univ, Sch Elect & Informat, Xian 710129, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷 / 1-14期
关键词
Semantics; Laser radar; Feature extraction; Hyperspectral imaging; Land surface; Data models; Data mining; Classification; land cover; multimodal; remote sensing (RS); semantic features; IMAGE CLASSIFICATION; NEURAL-NETWORK; FUSION;
D O I
10.1109/TGRS.2024.3368509
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The fusion of hyperspectral image (HSI) and light detection and ranging (LiDAR) data is widely used for land cover classification. However, due to different imaging mechanisms, HSI and LiDAR data always present significant image differences, and the dimensions and feature distributions of HSI and LiDAR are highly dissimilar. This makes it challenging to represent and correlate semantic information from multimodal data. Current methods for classifying pixel-by-pixel features, which rely on cascaded or attention-based fusion, cannot effectively use multimodal features. To achieve accurate classification results, extracting and fusing similar high-order semantic information and complementary discriminative information contained in multimodal data is vital. In this article, we propose a cross-modal semantic enhancement network (CMSE) for multimodal semantic information mining and fusion. Our proposed CMSE framework extracts features from the image on multiple scales, capturing more representative local sparse features with different sizes of convolution kernels. To represent high-level semantic features related to land cover, we establish a Gaussian-weighted matrix and semantically transform the spatial and spectral features of distinct branches. Finally, we build a multilevel residual fusion module to incrementally fuse spectral features from HSI and elevation features from LiDAR. Additionally, we introduce a cross-modal semantically constrained loss to guide multimodal semantic feature alignment. We evaluate our approach on three multimodal remote sensing (RS) datasets, namely the Houston2013, Trento, and MUUFL datasets. The experimental results demonstrate that our proposed CMSE model achieves superior performance in terms of accuracy and robustness compared to other related deep networks.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [1] Dynamic Cross-Modal Feature Interaction Network for Hyperspectral and LiDAR Data Classification
    Lin, Junyan
    Gao, Feng
    Qi, Lin
    Dong, Junyu
    Du, Qian
    Gao, Xinbo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [2] S2ENet: Spatial-Spectral Cross-Modal Enhancement Network for Classification of Hyperspectral and LiDAR Data
    Fang, Sheng
    Li, Kaiyu
    Li, Zhe
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [3] Progressive Semantic Enhancement Network for Hyperspectral and LiDAR Classification
    Fu, Xiyou
    Zhou, Xi
    Fu, Yawen
    Liu, Pan
    Jia, Sen
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,
  • [4] A cross-modal feature aggregation and enhancement network for hyperspectral and LiDAR joint classification
    Zhang, Yiyan
    Gao, Hongmin
    Zhou, Jun
    Zhang, Chenkai
    Ghamisi, Pedram
    Xu, Shufang
    Li, Chenming
    Zhang, Bing
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 258
  • [5] Multiview Hierarchical Network for Hyperspectral and LiDAR Data Classification
    Peng, Yishu
    Zhang, Yuwen
    Tu, Bing
    Zhou, Chengle
    Li, Qianming
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 1454 - 1469
  • [6] Ternary Modality Contrastive Learning for Hyperspectral and LiDAR Data Classification
    Xia, Shuxiang
    Zhang, Xiaohua
    Meng, Hongyun
    Jiao, Licheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [7] MSLAENet: Multiscale Learning and Attention Enhancement Network for Fusion Classification of Hyperspectral and LiDAR Data
    Fan, Yingying
    Qian, Yurong
    Qin, Yugang
    Wan, Yaling
    Gong, Weijun
    Chu, Zhuang
    Liu, Hui
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 10041 - 10054
  • [8] Joint Classification of Hyperspectral and LiDAR Data Based on Mamba
    Liao, Diling
    Wang, Qingsong
    Lai, Tao
    Huang, Haifeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [9] Classification of Hyperspectral and LiDAR Data Using Coupled CNNs
    Hang, Renlong
    Li, Zhu
    Ghamisi, Pedram
    Hong, Danfeng
    Xia, Guiyu
    Liu, Qingshan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (07): : 4939 - 4950
  • [10] Dual-Branch Dynamic Modulation Network for Hyperspectral and LiDAR Data Classification
    Xu, Zhengyi
    Jiang, Wen
    Geng, Jie
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61