∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\partial }$$\end{document} cohomology of the complement of a semi-positive anticanonical divisor of a compact surface

被引:0
作者
Takayuki Koike [1 ]
机构
[1] Osaka Metropolitan University,Department of Mathematics, Graduate School of Science
关键词
Dolbeault cohomology; The blow-up of the projective plane at nine points; Toroidal groups; The ; -lemma; Primary 32C35; Secondary 32F10;
D O I
10.1007/s00209-024-03587-5
中图分类号
学科分类号
摘要
Let X be a non-singular compact complex surface such that the anticanonical line bundle admits a smooth Hermitian metric with semi-positive curvature. For a non-singular hypersurface Y which defines an anticanonical divisor, we investigate the ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\partial }$$\end{document} cohomology group H1(M,OM)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1(M, \mathcal {O}_M)$$\end{document} of the complement M=X\Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=X\setminus Y$$\end{document}.
引用
收藏
相关论文
共 24 条
  • [1] Andreotti A(1962)Théorémes de finitude pour la cohomologie des espaces complexes Bull. Soc. Math. France 90 193-259
  • [2] Grauert H(1968)The Index of Elliptic Operators: III Ann. Math. 87 546-604
  • [3] Atiyah MF(2010)On Kähler surfaces with semipositive Ricci curvature Riv. Mat. Univ. Parma 1 441-450
  • [4] Singer IM(2015)The Math. Ann. 363 1001-1021
  • [5] Brunella M(1975)-cohomology of a bounded smooth Stein Domain is not necessarily Hausdorff Ann. Inst. Fourier. 25 215-235
  • [6] Chakrabarti D(1984)Embedding of open riemannian manifolds by harmonic functions Publ. Res. Inst. Math. Sci. 20 297-317
  • [7] Shaw M-C(1999) cohomology of Nagoya Math. J. 155 81-94
  • [8] Greene RE(2000)-groups Manuscripta Math. 102 25-39
  • [9] Wu HH(1990)-problem on weakly Publ. Res. Inst. Math. Sci. 26 473-484
  • [10] Kazama H(1960)-complete Kähler manifolds Ann. Math. 70 111-152