All chiral W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{W} $$\end{document}-algebra extensions of so23\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{so}\left(2,3\right) $$\end{document}

被引:0
作者
Nishant Gupta [1 ]
Nemani V. Suryanarayana [2 ]
机构
[1] Institute of Mathematical Sciences,
[2] Homi Bhabha National Institute,undefined
关键词
Conformal and W Symmetry; Holography and Hydrodynamics; AdS-CFT Correspondence; Scale and Conformal Symmetries;
D O I
10.1007/JHEP08(2024)137
中图分类号
学科分类号
摘要
We show that there are four chiral W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{W} $$\end{document}-algebra extensions of so23\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{so}\left(2,3\right) $$\end{document} algebra and construct them explicitly. We do this by a simple identification of each of the inequivalent embeddings of a copy of sl2ℝ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{sl}\left(2,\mathbb{R}\right) $$\end{document} in the so23\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{so}\left(2,3\right) $$\end{document} algebra and the maximal subalgebra h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{h} $$\end{document} that commutes with it. Then using the standard 2d chiral CFT techniques we find the corresponding W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{W} $$\end{document}-algebra extensions. Two of the four resultant W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{W} $$\end{document}-algebras are new, one of which may be thought of as the conformal bms3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{bms}}_3 $$\end{document} algebra valid for finite values of its central charge.
引用
收藏
相关论文
共 41 条
[1]  
Bouwknegt P(1993) Λ Phys. Rept. 223 183-undefined
[2]  
Schoutens K(2020)undefined JHEP 10 205-undefined
[3]  
Compère G(2021)undefined JHEP 05 210-undefined
[4]  
Fiorucci A(2010)undefined Phys. Rev. Lett. 105 062-undefined
[5]  
Ruzziconi R(2010)undefined JHEP 05 105-undefined
[6]  
Fiorucci A(2011)undefined JHEP 12 076-undefined
[7]  
Ruzziconi R(2014)undefined Phys. Rev. D 90 176-undefined
[8]  
Barnich G(2015)undefined JHEP 04 236-undefined
[9]  
Troessaert C(2021)undefined JHEP 02 053-undefined
[10]  
Barnich G(2022)undefined JHEP 09 116-undefined