Data-Driven Fault Detection and Isolation for Multirotor System Using Koopman Operator

被引:3
作者
Lee, Jayden Dongwoo [1 ]
Im, Sukjae [1 ]
Kim, Lamsu [1 ]
Ahn, Hyungjoo [1 ]
Bang, Hyochoong [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Aerosp Engn, 291 Daehak Ro, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
Fault detection and isolation (FDI); Data-driven modeling; Koopman operator; Extended dynamic mode decomposition (EDMD); Multirotor UAV; TOLERANT CONTROL; IDENTIFICATION; DIAGNOSIS; UAVS;
D O I
10.1007/s10846-024-02142-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a data-driven fault detection and isolation (FDI) for a multirotor system using Koopman operator and Luenberger observer. Koopman operator is an infinite-dimensional linear operator that can transform nonlinear dynamical systems into linear ones. Using this transformation, our aim is to apply the linear fault detection method to the nonlinear system. Initially, a Koopman operator-based linear model is derived to represent the multirotor system, considering factors like non-diagonal inertial tensor, center of gravity variations, aerodynamic effects, and actuator dynamics. Various candidate lifting functions are evaluated for prediction performance and compared using the root mean square error to identify the most suitable one. Subsequently, a Koopman operator-based Luenberger observer is proposed using the lifted linear model to generate residuals for identifying faulty actuators. Simulation and experimental results demonstrate the effectiveness of the proposed observer in detecting actuator faults such as bias and loss of effectiveness, without the need for an explicitly defined fault dataset.
引用
收藏
页数:20
相关论文
共 48 条
[1]  
Achmadiah MN, 2017, INT CONF INSTRUM, P193, DOI 10.1109/ICA.2017.8068439
[2]   A Bibliometric Review and Analysis of Data-Driven Fault Detection and Diagnosis Methods for Process Systems [J].
Alauddin, Md ;
Khan, Faisal ;
Imtiaz, Syed ;
Ahmed, Salim .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2018, 57 (32) :10719-10735
[3]   Actuator fault detection and isolation on a quadrotor unmanned aerial vehicle modeled as a linear parameter-varying system [J].
Alberto Guzman-Rabasa, Julio ;
Ronay Lopez-Estrada, Francisco ;
Manuel Gonzalez-Contreras, Brian ;
Valencia-Palomo, Guillermo ;
Chadli, Mohammed ;
Perez-Patricio, Madain .
MEASUREMENT & CONTROL, 2019, 52 (9-10) :1228-1239
[4]   A review of Fault Tolerant Control Systems: Advancements and applications [J].
Amin, Arslan Ahmed ;
Hasan, Khalid Mahmood .
MEASUREMENT, 2019, 143 :58-68
[5]   Model-based Fault Detection and Identification of a Quadrotor with Rotor Fault [J].
Asadi, Davood .
INTERNATIONAL JOURNAL OF AERONAUTICAL AND SPACE SCIENCES, 2022, 23 (05) :916-928
[6]   Data-driven fault detection and isolation of nonlinear systems using deep learning for Koopman operator [J].
Bakhtiaridoust, Mohammadhosein ;
Yadegar, Meysam ;
Meskin, Nader .
ISA TRANSACTIONS, 2023, 134 :200-211
[7]   Data-driven sensor fault detection and isolation of nonlinear systems: Deep neural-network Koopman operator [J].
Bakhtiaridoust, Mohammadhosein ;
Irani, Fatemeh Negar ;
Yadegar, Meysam ;
Meskin, Nader .
IET CONTROL THEORY AND APPLICATIONS, 2023, 17 (02) :123-132
[8]   Model-Free Geometric Fault Detection and Isolation for Nonlinear Systems Using Koopman Operator [J].
Bakhtiaridoust, Mohammadhosein ;
Yadegar, Meysam ;
Meskin, Nader ;
Noorizadeh, Mohammad .
IEEE ACCESS, 2022, 10 :14835-14845
[9]   Data-Driven Control of Soft Robots Using Koopman Operator Theory [J].
Bruder, Daniel ;
Fu, Xun ;
Gillespie, R. Brent ;
Remy, C. David ;
Vasudevan, Ram .
IEEE TRANSACTIONS ON ROBOTICS, 2021, 37 (03) :948-961
[10]   Applied Koopmanism [J].
Budisic, Marko ;
Mohr, Ryan ;
Mezic, Igor .
CHAOS, 2012, 22 (04)