Enhancing social media post popularity prediction with visual content

被引:1
作者
Jeong, Dahyun [1 ]
Son, Hyelim [2 ]
Choi, Yunjin [1 ]
Kim, Keunwoo [3 ]
机构
[1] Univ Seoul, Dept Stat, Seoulsiripdae Ro 163, Seoul, South Korea
[2] Univ Seoul, Sch Econ, Seoulsiripdae Ro 163, Seoul, South Korea
[3] Univ Seoul, Coll Business Adm, Seoulsiripdae Ro 163, Seoul 02504, South Korea
基金
新加坡国家研究基金会;
关键词
Popularity prediction; Social media data analysis; Image contents mining; Non-linear data structure; SPACE;
D O I
10.1007/s42952-024-00270-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Our study presents a framework for predicting image-based social media content popularity that focuses on addressing complex image information and a hierarchical data structure. We utilize the Google Cloud Vision API to effectively extract key image and color information from users' postings, achieving 6.8% higher accuracy compared to using non-image covariates alone. For prediction, we explore a wide range of prediction models, including Linear Mixed Model, Support Vector Regression, Multi-layer Perceptron, Random Forest, and XGBoost, with linear regression as the benchmark. Our comparative study demonstrates that models that are capable of capturing the underlying nonlinear interactions between covariates outperform other methods.
引用
收藏
页码:844 / 882
页数:39
相关论文
共 76 条
[1]   Multimodal Deep Learning Framework for Image Popularity Prediction on Social Media [J].
Abousaleh, Fatma S. ;
Cheng, Wen-Huang ;
Yu, Neng-Hao ;
Tsao, Yu .
IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2021, 13 (03) :679-692
[2]  
Arapakis I, 2014, LECT NOTES COMPUT SC, V8851, P290, DOI 10.1007/978-3-319-13734-6_21
[3]   Exploring User Behaviour on Etsy through Dominant Colors [J].
Aryafar, Kamelia ;
Lynch, Corey ;
Attenberg, Josh .
2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, :1437-1442
[4]  
Bin Lu, 2011, 2011 IEEE International Conference on Data Mining Workshops, P81, DOI 10.1109/ICDMW.2011.125
[5]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[6]  
Caliandro A, 2021, SOC MEDIA SOC, V7, DOI [10.1177/20563051211021367, DOI 10.1177/20563051211021367]
[7]   Micro Tells Macro: Predicting the Popularity of Micro-Videos via a Transductive Model [J].
Chen, Jingyuan ;
Song, Xuemeng ;
Nie, Liqiang ;
Wang, Xiang ;
Zhang, Hanwang ;
Chua, Tat-Seng .
MM'16: PROCEEDINGS OF THE 2016 ACM MULTIMEDIA CONFERENCE, 2016, :898-907
[8]   Social Media Popularity Prediction Based on Visual-Textual Features with XGBoost [J].
Chen, Junhong ;
Liang, Dayong ;
Zhu, Zhanmo ;
Zhou, Xiaojing ;
Ye, Zihan ;
Mo, Xiuyun .
PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), 2019, :2692-2696
[9]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[10]   Event Popularity Prediction Using Influential Hashtags From Social Media [J].
Chen, Xi ;
Zhou, Xiangmin ;
Chan, Jeffrey ;
Chen, Lei ;
Sellis, Timos ;
Zhang, Yanchun .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (10) :4797-4811