Light-sensitive and adaptive fusion network for RGB-T crowd counting

被引:3
|
作者
Huang, Liangjun [1 ]
Kang, Wencan [1 ]
Chen, Guangkai [1 ]
Zhang, Qing [1 ]
Zhang, Jianwei [2 ]
机构
[1] Shanghai Inst Technol, Sch Comp Sci & Informat Engn, Shanghai 201418, Peoples R China
[2] Univ Hamburg, Dept Informat, D-20354 Hamburg, Germany
来源
VISUAL COMPUTER | 2024年 / 40卷 / 10期
基金
上海市自然科学基金;
关键词
RGB-T image; Crowd counting; Light-sensitive; Cross-modal fusion; PEOPLE; IMAGE;
D O I
10.1007/s00371-024-03388-1
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Mainstream RGB-T crowd counting methods use cross-modal complementary information to improve the counting accuracy. However, most of them neglect the effect of lighting variation on cross-modal data fusion. In this paper, we propose a Light-sensitive and Adaptive Fusion Network (LAFNet) for RGB-T crowd counting. Specifically, we present a Modality-specific Feature Extraction Module (MFEM) that fuses the lighting information, and a Light-sensitive and Adaptive Fusion Module (LAFM) that adjusts the fusion strategies of different modalities according to the lighting conditions of the input crowd images. Moreover, we propose an Improved Multi-scale Extraction Module (IMEM) to extract and fuse multi-modal at different scales. We evaluate our method on the RGBT-CC dataset and the experiment results show the validity of the model and its effectiveness in various scenarios.
引用
收藏
页码:7279 / 7292
页数:14
相关论文
共 50 条
  • [11] AGFNet: Adaptive Gated Fusion Network for RGB-T Semantic Segmentation
    Zhou, Xiaofei
    Wu, Xiaoling
    Bao, Liuxin
    Yin, Haibing
    Jiang, Qiuping
    Zhang, Jiyong
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2025,
  • [12] Siamese infrared and visible light fusion network for RGB-T tracking
    Jingchao Peng
    Haitao Zhao
    Zhengwei Hu
    Yi Zhuang
    Bofan Wang
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 3281 - 3293
  • [13] Siamese infrared and visible light fusion network for RGB-T tracking
    Peng, Jingchao
    Zhao, Haitao
    Hu, Zhengwei
    Zhuang, Yi
    Wang, Bofan
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (09) : 3281 - 3293
  • [14] CrowdAlign: Shared-weight dual-level alignment fusion for RGB-T crowd counting
    Kong, Weihang
    Yu, Zepeng
    Li, He
    Tong, Liangang
    Zhao, Fengda
    Li, Yang
    IMAGE AND VISION COMPUTING, 2024, 148
  • [15] CMPNet: A cross-modal multi-scale perception network for RGB-T crowd counting
    Zhang, Shihui
    Chen, Kun
    Zhai, Gangzheng
    Li, He
    Han, Shaojie
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2025, 164
  • [16] Dilated high-resolution network driven RGB-T multi-modal crowd counting
    Liu, Zhengyi
    Tan, Yacheng
    Wu, Wei
    Tang, Bin
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2023, 112
  • [17] Consistency-constrained RGB-T crowd counting via mutual information maximization
    Guo, Qiang
    Yuan, Pengcheng
    Huang, Xiangming
    Ye, Yangdong
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (04) : 5049 - 5070
  • [18] Learning the cross-modal discriminative feature representation for RGB-T crowd counting
    Li, He
    Zhang, Shihui
    Kong, Weihang
    KNOWLEDGE-BASED SYSTEMS, 2022, 257
  • [19] Region Selective Fusion Network for Robust RGB-T Tracking
    Yu, Zhencheng
    Fan, Huijie
    Wang, Qiang
    Li, Ziwan
    Tang, Yandong
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 1357 - 1361
  • [20] MC3Net: Multimodality Cross-Guided Compensation Coordination Network for RGB-T Crowd Counting
    Zhou, Wujie
    Yang, Xun
    Lei, Jingsheng
    Yan, Weiqing
    Yu, Lu
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (05) : 4156 - 4165