scCDC: a computational method for gene-specific contamination detection and correction in single-cell and single-nucleus RNA-seq data

被引:0
作者
Wang, Weijian [1 ]
Cen, Yihui [1 ]
Lu, Zezhen [1 ]
Xu, Yueqing [1 ]
Sun, Tianyi [2 ]
Xiao, Ying [3 ]
Liu, Wanlu [1 ]
Li, Jingyi Jessica [2 ]
Wang, Chaochen [1 ,4 ,5 ]
机构
[1] Zhejiang Univ, Sch Med, ZJU UoE Inst, Ctr Biomed Syst & Informat, Int Campus, Haining 314400, Zhejiang, Peoples R China
[2] Univ Calif Los Angeles, Dept Stat & Data Sci, Los Angeles, CA 90095 USA
[3] Zhejiang Univ, Sir Run Run Shaw Hosp, Sch Med, Hangzhou 310020, Zhejiang, Peoples R China
[4] Zhejiang Univ, Sch Med, Affiliated Hosp 2, Dept Gynecol, Hangzhou 310020, Zhejiang, Peoples R China
[5] Zhejiang Univ, Biomed & Hlth Translat Res Ctr, Haining 314400, Zhejiang, Peoples R China
来源
GENOME BIOLOGY | 2024年 / 25卷 / 01期
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
MAMMARY-GLAND DEVELOPMENT; EXPRESSION;
D O I
10.1186/s13059-024-03284-w
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In droplet-based single-cell and single-nucleus RNA-seq assays, systematic contamination of ambient RNA molecules biases the quantification of gene expression levels. Existing methods correct the contamination for all genes globally. However, there lacks specific evaluation of correction efficacy for varying contamination levels. Here, we show that DecontX and CellBender under-correct highly contaminating genes, while SoupX and scAR over-correct lowly/non-contaminating genes. Here, we develop scCDC as the first method to detect the contamination-causing genes and only correct expression levels of these genes, some of which are cell-type markers. Compared with existing decontamination methods, scCDC excels in decontaminating highly contaminating genes while avoiding over-correction of other genes.
引用
收藏
页数:29
相关论文
共 84 条
  • [1] [Anonymous], 2017, Datasets
  • [2] [Anonymous], 2018, Datasets. 10XGenomics
  • [3] Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage
    Aran, Dvir
    Looney, Agnieszka P.
    Liu, Leqian
    Wu, Esther
    Fong, Valerie
    Hsu, Austin
    Chak, Suzanna
    Naikawadi, Ram P.
    Wolters, Paul J.
    Abate, Adam R.
    Butte, Atul J.
    Bhattacharya, Mallar
    [J]. NATURE IMMUNOLOGY, 2019, 20 (02) : 163 - +
  • [4] Differentiation dynamics of mammary epithelial cells revealed by single-cell RNA sequencing
    Bach, Karsten
    Pensa, Sara
    Grzelak, Marta
    Hadfield, James
    Adams, David J.
    Marioni, John C.
    Khaled, Walid T.
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [5] Generalizing RNA velocity to transient cell states through dynamical modeling
    Bergen, Volker
    Lange, Marius
    Peidli, Stefan
    Wolf, F. Alexander
    Theis, Fabian J.
    [J]. NATURE BIOTECHNOLOGY, 2020, 38 (12) : 1408 - 1414
  • [6] IAPP-induced beta cell stress recapitulates the islet transcriptome in type 2 diabetes
    Blencowe, Montgomery
    Furterer, Allison
    Wang, Qing
    Gao, Fuying
    Rosenberger, Madeline
    Pei, Lina
    Nomoto, Hiroshi
    Mawla, Alex M.
    Huising, Mark O.
    Coppola, Giovanni
    Yang, Xia
    Butler, Peter C.
    Gurlo, Tatyana
    [J]. DIABETOLOGIA, 2022, 65 (01) : 173 - 187
  • [7] Brewer JR, 2021, Datasets. Gene Expression Omnibus
  • [8] Searching large-scale scRNA-seq databases via unbiased cell embedding with Cell BLAST
    Cao, Zhi-Jie
    Wei, Lin
    Lu, Shen
    Yang, De-Chang
    Gao, Ge
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [9] Cen Y, 2024, Github
  • [10] Notch ligand Dll1 mediates cross-talk between mammary stem cells and the macrophageal niche
    Chakrabarti, Rumela
    Celia-Terrassa, Toni
    Kumar, Sushil
    Hang, Xiang
    Wei, Yong
    Choudhury, Abrar
    Hwang, Julie
    Peng, Jia
    Nixon, Briana
    Grady, John J.
    DeCoste, Christina
    Gao, Jie
    van Es, Johan H.
    Li, Ming O.
    Aifantis, Iannis
    Clevers, Hans
    Kang, Yibin
    [J]. SCIENCE, 2018, 360 (6396) : 1421 - +