Planar Homogeneous Coexisting Hyperchaos in Bimemristor Cyclic Hopfield Neural Network

被引:38
作者
Bao, Han [1 ]
Chen, Zhuguan [1 ]
Ma, Jun [2 ]
Xu, Quan [1 ]
Bao, Bocheng [1 ]
机构
[1] Changzhou Univ, Sch Microelect & Control Engn, Changzhou 213159, Peoples R China
[2] Lanzhou Univ Technol, Dept Phys, Lanzhou 730050, Peoples R China
基金
中国国家自然科学基金;
关键词
Neurons; Memristors; Biological neural networks; Stability analysis; Bifurcation; Mathematical models; Couplings; Coexisting attractors; cyclic Hopfield neural network (CHNN); hyperchaos; initial state; memristor;
D O I
10.1109/TIE.2024.3387058
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Memristors with synaptic plasticity can act as changeable connection weights. To address the issue of no chaos in cyclic trineuron Hopfield neural network with resistive weights, a bimemristor cyclic Hopfield neural network (BM-CHNN) is presented by substituting two resistive weights with two memristive weights, and thus chaos and hyperchaos are demonstrated. BM-CHNN has a planar equilibrium set, and the stability distribution related to two memristor initial states is discussed by exploring three nonzero eigenvalues. Further, parameter-relied bifurcation and heterogeneous coexisting behaviors are disclosed, and planar homogeneous coexisting hyperchaotic (HC) attractors regulated by the memristor initial states are uncovered. The results manifest that BM-CHNN not only displays chaos and hyperchaos but also exhibits the planar homogeneous coexisting hyperchaos owning the elegant basins of attraction with fantastic manifold structures and fractal boundaries. Finally, a STM32-based hardware platform is fabricated and the heterogeneous and homogeneous coexisting attractors are captured experimentally to confirm the numerical results.
引用
收藏
页码:16398 / 16408
页数:11
相关论文
共 36 条
[1]  
[Anonymous], 1980, Meccanica, DOI DOI 10.1007/BF02128237
[2]   Brain chaos and computation [J].
Babloyantz, A ;
Lourenco, C .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 1996, 7 (04) :461-471
[3]   Design and Real-Time Implementation of SHEPWM in Single-Phase Inverter Using Generalized Hopfield Neural Network [J].
Balasubramonian, M. ;
Rajamani, V. .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2014, 61 (11) :6327-6336
[4]   Offset-Control Plane Coexisting Behaviors in Two-Memristor-Based Hopfield Neural Network [J].
Bao, Han ;
Hua, Mengjie ;
Ma, Jun ;
Chen, Mo ;
Bao, Bocheng .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2023, 70 (10) :10526-10535
[5]   Memristive cyclic three-neuron-based neural network with chaos and global coexisting attractors [J].
Bao Han ;
Chen ZhuGuan ;
Cai JianMing ;
Xu Quan ;
Bao BoCheng .
SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2022, 65 (11) :2582-2592
[6]   Memristor-Based Hyperchaotic Maps and Application in Auxiliary Classifier Generative Adversarial Nets [J].
Bao, Han ;
Hua, Zhongyun ;
Li, Houzhen ;
Chen, Mo ;
Bao, Bocheng .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (08) :5297-5306
[7]   Power-efficient combinatorial optimization using intrinsic noise in memristor Hopfield neural networks [J].
Cai, Fuxi ;
Kumar, Suhas ;
Van Vaerenbergh, Thomas ;
Sheng, Xia ;
Liu, Rui ;
Li, Can ;
Liu, Zhan ;
Foltin, Martin ;
Yu, Shimeng ;
Xia, Qiangfei ;
Yang, J. Joshua ;
Beausoleil, Raymond ;
Lu, Wei D. ;
Strachan, John Paul .
NATURE ELECTRONICS, 2020, 3 (07) :409-418
[8]   HODGKIN-HUXLEY AXON IS MADE OF MEMRISTORS [J].
Chua, Leon ;
Sbitnev, Valery ;
Kim, Hyongsuk .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (03)
[9]   Hidden chaotic sets in a Hopfield neural system [J].
Danca, Marius-F. ;
Kuznetsov, Nikolay .
CHAOS SOLITONS & FRACTALS, 2017, 103 :144-150
[10]   Associative memory realized by a reconfigurable memristive Hopfield neural network [J].
Hu, S. G. ;
Liu, Y. ;
Liu, Z. ;
Chen, T. P. ;
Wang, J. J. ;
Yu, Q. ;
Deng, L. J. ;
Yin, Y. ;
Hosaka, Sumio .
NATURE COMMUNICATIONS, 2015, 6