共 13 条
Boundedness and exponential stabilization for time-space fractional parabolic-elliptic Keller-Segel model in higher dimensions
被引:0
作者:
Gao, Fei
[1
,2
]
Zhan, Hui
[1
,2
]
机构:
[1] Wuhan Univ Technol, Sch Sci, Dept Math, Luoshi Rd 122, Wuhan 430070, Peoples R China
[2] Wuhan Univ Technol, Ctr Math Sci, Sch Sci, Luoshi Rd 122, Wuhan 430070, Peoples R China
关键词:
Parabolic-elliptic Keller-Segel model;
Time-space fractional derivative;
Boundedness;
Exponential stabilization;
D O I:
10.1016/j.aml.2023.108699
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We consider initial boundary value problem for the time-space fractional parabolic- elliptic Keller-Segel model{C0D beta tu=-(-triangle)alpha 2(rho(v)u) (t,x)is an element of(0,T]x ohm (-triangle) alpha 2 v + v = u, (t, x) E (0, T] x ohm in a bounded domain ohm C R-n(n > 3) with smooth boundary, where beta E (0, 1), alpha E (1, 2) and rho stands for a signal-dependent motility. It is shown that for some special initial datum, there exists the uniform-in-time upper bound for v such that the associated initial-boundary system possesses a global classical solution which is uniformly bounded. Moreover, building on this boundedness property, it is proved that the exponential stabilization of the classical solution. (c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文