Boundedness and exponential stabilization for time-space fractional parabolic-elliptic Keller-Segel model in higher dimensions

被引:0
作者
Gao, Fei [1 ,2 ]
Zhan, Hui [1 ,2 ]
机构
[1] Wuhan Univ Technol, Sch Sci, Dept Math, Luoshi Rd 122, Wuhan 430070, Peoples R China
[2] Wuhan Univ Technol, Ctr Math Sci, Sch Sci, Luoshi Rd 122, Wuhan 430070, Peoples R China
关键词
Parabolic-elliptic Keller-Segel model; Time-space fractional derivative; Boundedness; Exponential stabilization;
D O I
10.1016/j.aml.2023.108699
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider initial boundary value problem for the time-space fractional parabolic- elliptic Keller-Segel model{C0D beta tu=-(-triangle)alpha 2(rho(v)u) (t,x)is an element of(0,T]x ohm (-triangle) alpha 2 v + v = u, (t, x) E (0, T] x ohm in a bounded domain ohm C R-n(n > 3) with smooth boundary, where beta E (0, 1), alpha E (1, 2) and rho stands for a signal-dependent motility. It is shown that for some special initial datum, there exists the uniform-in-time upper bound for v such that the associated initial-boundary system possesses a global classical solution which is uniformly bounded. Moreover, building on this boundedness property, it is proved that the exponential stabilization of the classical solution. (c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 13 条
  • [11] Cauchy problems for Keller-Segel type time-space fractional diffusion equation
    Li, Lei
    Liu, Jian-Guo
    Wang, Lizhen
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (03) : 1044 - 1096
  • [12] Global existence and asymptotic behavior of classical solutions to a fractional logistic Keller-Segel system
    Zhang, Weiyi
    Liu, Zuhan
    Zhou, Ling
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 189
  • [13] A class of time-fractional reaction-diffusion equation with nonlocal boundary condition
    Zhou, Yong
    Shangerganesh, L.
    Manimaran, J.
    Debbouche, Amar
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (08) : 2987 - 2999