Boundedness and exponential stabilization for time-space fractional parabolic-elliptic Keller-Segel model in higher dimensions

被引:0
作者
Gao, Fei [1 ,2 ]
Zhan, Hui [1 ,2 ]
机构
[1] Wuhan Univ Technol, Sch Sci, Dept Math, Luoshi Rd 122, Wuhan 430070, Peoples R China
[2] Wuhan Univ Technol, Ctr Math Sci, Sch Sci, Luoshi Rd 122, Wuhan 430070, Peoples R China
关键词
Parabolic-elliptic Keller-Segel model; Time-space fractional derivative; Boundedness; Exponential stabilization;
D O I
10.1016/j.aml.2023.108699
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider initial boundary value problem for the time-space fractional parabolic- elliptic Keller-Segel model{C0D beta tu=-(-triangle)alpha 2(rho(v)u) (t,x)is an element of(0,T]x ohm (-triangle) alpha 2 v + v = u, (t, x) E (0, T] x ohm in a bounded domain ohm C R-n(n > 3) with smooth boundary, where beta E (0, 1), alpha E (1, 2) and rho stands for a signal-dependent motility. It is shown that for some special initial datum, there exists the uniform-in-time upper bound for v such that the associated initial-boundary system possesses a global classical solution which is uniformly bounded. Moreover, building on this boundedness property, it is proved that the exponential stabilization of the classical solution. (c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 13 条
  • [1] Global well-posedness and stability of constant equilibria in parabolic-elliptic chemotaxis systems without gradient sensing
    Ahn, Jaewook
    Yoon, Changwook
    [J]. NONLINEARITY, 2019, 32 (04) : 1327 - 1351
  • [2] A SURVEY OF USEFUL INEQUALITIES IN FRACTIONAL CALCULUS
    Alsaedi, Ahmed
    Ahmad, Bashir
    Kirane, Mokhtar
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2017, 20 (03) : 574 - 594
  • [3] On Cauchy problem for fractional parabolic-elliptic Keller-Segel model
    Anh Tuan Nguyen
    Nguyen Huy Tuan
    Yang, Chao
    [J]. ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01) : 97 - 116
  • [4] Existence and asymptotic behaviour for the time-fractional Keller-Segel model for chemotaxis
    Azevedo, Joelma
    Cuevas, Claudio
    Henriquez, Erwin
    [J]. MATHEMATISCHE NACHRICHTEN, 2019, 292 (03) : 462 - 480
  • [5] A General Fractional Porous Medium Equation
    de Pablo, Arturo
    Quiros, Fernando
    Rodriguez, Ana
    Luis Vazquez, Juan
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2012, 65 (09) : 1242 - 1284
  • [6] Hitchhiker's guide to the fractional Sobolev spaces
    Di Nezza, Eleonora
    Palatucci, Giampiero
    Valdinoci, Enrico
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05): : 521 - 573
  • [7] Some properties of fractional integrals I
    Hardy, GH
    Littlewood, JE
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1928, 27 : 565 - 606
  • [8] Boundedness and Exponential Stabilization in a Parabolic-Elliptic Keller-Segel Model with Signal-Dependent Motilities for Local Sensing Chemotaxis
    Jiang, Jie
    [J]. ACTA MATHEMATICA SCIENTIA, 2022, 42 (03) : 825 - 846
  • [9] Weak solutions to the Cauchy problem of fractional time-space Keller-Segel equation
    Jiang, Zi-wen
    Wang, Li-zhen
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (18) : 14094 - 14113
  • [10] jlekova E.G.B., 2001, Eindh. Univ. Technol. Ndhoven, V14, P737